DeepSeek对比ChatGPT有何改进,可以用更低成本计算

下面是基于DeepSeek公开论文和代码,与ChatGPT对比后总结的改进点,以及其为何能用更少算力训练大模型的解析。

https://arxiv.org/pdf/2412.19437


1. 改进点对比

1.1 架构稀疏化与混合专家(MoE)设计

  • DeepSeek采用稀疏激活与混合专家架构
    在DeepSeek中,模型被设计成一个混合专家(Mixture of Experts, MoE)系统,其中每次输入只激活部分专家网络,而不是整个模型。
    • 效果:这样一来,即使模型总参数量非常大,但每次计算只使用其中一小部分,极大地降低了前向和反向传播时的计算量。
  • 对比ChatGPT
    ChatGPT(例如GPT-4࿰
### 特点对比 DeepSeekChatGPT 均属于大型预训练模型,但在架构设计和技术实现上存在差异。 对于 DeepSeek 而言,其特点在于高度定制化的行业应用支持以及深入的企业级服务集成能力。这使得 DeepSeek 适合特定领域内的复杂查询处理和数据分析任务[^1]。 相比之下,ChatGPT 是基于 Transformer 架构构建的语言模型,具有广泛的通用性和强大的自然语言理解能力。它能够处理多种类型的对话场景,并且在开放域问答方面表现出色[^2]。 ### 性能表现 就性能而言,两者都依赖于高效的分布式计算框架来加速推理过程并降低延迟时间。然而,在实际部署环境中,具体的表现会受到硬件配置、网络条件等因素的影响。 值得注意的是,由于 Singularity 推荐用于快速简便的操作或是为了获得好的性能优化效果,因此如果涉及到高性能需求的任务,则可能适合采用类似 Singularity 的解决方案而非 Docker 或 Shifter 这样的容器化技术。不过此条目主要针对容器技术的选择,并不直接适用于 DeepSeekChatGPT 的比较。 ### 应用场景分析 #### DeepSeek - **企业内部知识库检索** - 提供精准的知识图谱匹配功能,帮助企业员工迅速找到所需资料。 - **金融风险评估** - 利用深度学习算法对海量交易数据进行实时监控预警,防范潜在的风险事件发生。 ```python import deepseek as ds # 初始化客户端实例 client = ds.Client(api_key='your_api_key') # 执行搜索操作 results = client.search(query="example query", index_name="financial_data") print(results) ``` #### ChatGPT - **客户服务聊天机器人** - 可以为用户提供全天候在线咨询服务解答常见问题,提升用户体验满意度。 - **教育辅助工具** - 协助教师批改作业、准备课程材料;同时也可作为学生的自学伴侣指导完成课业练习。 ```python from transformers import pipeline chatbot = pipeline('conversational', model='microsoft/DialoGPT-medium') response = chatbot("What's your favorite book?") for res in response: print(res['generated_text']) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

越哥聊AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值