【动态规划】完全背包问题

完全懵逼的动态规划dp:

/*
	完全背包问题
	 
	有n种重量和价值分别为wi,vi的物品。从这些物品种挑选总重量不超过W的物品,
	求出挑选物品价值总和的最大值。在这里,每种物品可以挑选任意多件。 
*/
#include<iostream>
#include<cstdlib>
#include<cstring>
#define MAX_N 105
#define MAX_W 10010
using namespace std;

int dp[MAX_N][MAX_W];
int N,W;
int w[MAX_N],v[MAX_N];

void solve1()
{
	cout << "-----------------\n枚举k种可能:";
	//i表示当前第i种物品
	//j表示重量
	//k表示第i种物品挑选了多少次 
	for(int i=0;i<N;i++)
		for(int j=0;j<=W;j++)
			for(int k=0;k*w[i]<=j;k++)
				dp[i+1][j]=max(dp[i+1][j],dp[i][j-k*w[i]]+k*v[i]);
	cout << dp[N][W] << endl;
}

void solve2()
{
	cout << "-----------------\n通过关系式:";
	/*
	在dp[i+1][j]的计算中选择k(k>=1)个情况,与dp[i+1][j-w[i]]的计算中选择k-1个
	情况是相同的,所以dp[i+1][j]的递推中k>=1部分的计算已经在dp[i+1][j-w[i]]的
	计算中完成了。那么可以这么变形:
	max{dp[i][j-k*w[i]]+k*v[i]|0<=k}
	=max(dp[i][j],max{dp[i][j-k*w[i]]+k*v[i]}|1<=k)
	=max(dp[i][j],max{dp[i][(j-w[i])-k*w[i]]+k*v[i]|0<=k}+v[i])
	=max(dp[i][j],dp[i+1][j-w[i]]+v[i]) 
	*/
	memset(dp,0,sizeof(dp));
	for(int i=0;i<N;i++)
		for(int j=0;j<=W;j++)
			if(j<w[i])
				dp[i+1][j]=dp[i][j];
			else
				dp[i+1][j]=max(dp[i][j],dp[i+1][j-w[i]]+v[i]);
	cout << dp[N][W] << endl;
}

void solve3()
{
	cout << "-----------------\n通过一维数组实现:";
	int DP[MAX_W];
	memset(DP,0,sizeof(DP));
	for(int i=0;i<N;i++)
		for(int j=w[i];j<=W;j++)
			DP[j]=max(DP[j],DP[j-w[i]]+v[i]);
	cout << DP[W] << endl;
}

int main()
{
	
	cin >> N >> W;
	for(int i=0;i<N;i++)
		cin >> w[i] >> v[i];	
	solve1();
	solve2();
	solve3();
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值