完全懵逼的动态规划dp:
/*
完全背包问题
有n种重量和价值分别为wi,vi的物品。从这些物品种挑选总重量不超过W的物品,
求出挑选物品价值总和的最大值。在这里,每种物品可以挑选任意多件。
*/
#include<iostream>
#include<cstdlib>
#include<cstring>
#define MAX_N 105
#define MAX_W 10010
using namespace std;
int dp[MAX_N][MAX_W];
int N,W;
int w[MAX_N],v[MAX_N];
void solve1()
{
cout << "-----------------\n枚举k种可能:";
//i表示当前第i种物品
//j表示重量
//k表示第i种物品挑选了多少次
for(int i=0;i<N;i++)
for(int j=0;j<=W;j++)
for(int k=0;k*w[i]<=j;k++)
dp[i+1][j]=max(dp[i+1][j],dp[i][j-k*w[i]]+k*v[i]);
cout << dp[N][W] << endl;
}
void solve2()
{
cout << "-----------------\n通过关系式:";
/*
在dp[i+1][j]的计算中选择k(k>=1)个情况,与dp[i+1][j-w[i]]的计算中选择k-1个
情况是相同的,所以dp[i+1][j]的递推中k>=1部分的计算已经在dp[i+1][j-w[i]]的
计算中完成了。那么可以这么变形:
max{dp[i][j-k*w[i]]+k*v[i]|0<=k}
=max(dp[i][j],max{dp[i][j-k*w[i]]+k*v[i]}|1<=k)
=max(dp[i][j],max{dp[i][(j-w[i])-k*w[i]]+k*v[i]|0<=k}+v[i])
=max(dp[i][j],dp[i+1][j-w[i]]+v[i])
*/
memset(dp,0,sizeof(dp));
for(int i=0;i<N;i++)
for(int j=0;j<=W;j++)
if(j<w[i])
dp[i+1][j]=dp[i][j];
else
dp[i+1][j]=max(dp[i][j],dp[i+1][j-w[i]]+v[i]);
cout << dp[N][W] << endl;
}
void solve3()
{
cout << "-----------------\n通过一维数组实现:";
int DP[MAX_W];
memset(DP,0,sizeof(DP));
for(int i=0;i<N;i++)
for(int j=w[i];j<=W;j++)
DP[j]=max(DP[j],DP[j-w[i]]+v[i]);
cout << DP[W] << endl;
}
int main()
{
cin >> N >> W;
for(int i=0;i<N;i++)
cin >> w[i] >> v[i];
solve1();
solve2();
solve3();
return 0;
}