一个程序员一生中可能会邂逅各种各样的算法,但总有那么几种,是作为一个程序员一定会遇见且大概率需要掌握的算法。今天就来聊聊这些十分重要的“必抓!”算法吧~
一:引言
算法是计算机科学中的重要概念,它是指一系列解决特定问题的指令或规则。算法的重要性在于,它们可以帮助我们解决各种问题,在不同领域都有广泛的应用。比如,搜索引擎使用排序算法来将相关性更高的结果排在前面;数学家使用算法来解决一些复杂的数学问题;医学领域也在使用算法来辅助诊断和治疗等。
二:常见算法介绍
排序算法:
冒泡排序 选择排序 插入排序 归并排序 快速排序 堆排序
选择排序:每次从未排序的数列中选出最小的数,放到已排序的数列的末尾。
插入排序:将数列分为已排序和未排序两部分,每次从未排序中取出一个数,插入到已排序数列的合适位置。
归并排序:将数列分为相等的两部分,递归地对两部分进行排序,然后将排序后的部分合并成一个有序数列。
快速排序:选择一个基准元素,将数列分为小于基准的部分和大于基准的部分,递归地对这两部分进行排序。
堆排序:将数列看成一个二叉树,将树转换成一个堆,每次从堆中取出最大值,放入已排序的数列的末尾,再对剩余的堆进行排序。
查找算法:
顺序查找 二分查找 哈希查找 插值查找 斐波那契查找
顺序查找:从头到尾依次检查每一个元素,直到找到目标元素或者遍历到数组的末尾为止。
二分查找:通过比较目标元素和一个有序数组的中间元素,可以将数组分成两半,如果目标元素小于中间元素,则继续在左半边查找,如果目标元素大于中间元素,则继续在右半边查找,直到找到目标元素或者确认目标元素不存在为止。
哈希查找:通过将目标元素映射到一个数组中的位置来查找元素,这个映射函数就叫做哈希函数。哈希查找需要保证哈希函数具有良好的散列性能,也就是尽可能的将不同的元素映射到不同的位置上。
插值查找:对于一个有序数组,通过计算目标元素在数组中的相对位置,估计目标元素在数组中的位置,然后和中间元素比较,如果相等则找到了目标元素,如果不相等则根据大小关系继续在左半部分或右半部分查找。
斐波那契查找:类似于二分查找,但是将分割点从中间位置移动到斐波那契数列中的某个位置,这个位置可以通过斐波那契数列的性质计算出来。斐波那契查找比二分查找的平均时间复杂度更低,但是实现起来比较复杂
图论算法:
Dijkstra算法 Floyd算法 Kruskal算法 Prim算法 拓扑排序
这些算法大多数都是图算法(除了拓扑排序),用于解决图论中经典的问题。以下是它们的简要介绍:
1. Dijkstra算法:用于找到从起点到所有其他节点的最短路径。它是一种贪心算法,适用于无权图和有权图。
2. Floyd算法:用于计算图中所有节点之间的最短路径。它是一种动态规划算法,适用于有向图和无向图。
3. Kruskal算法:用于找到一个无向图的最小生成树,即连接所有节点的最小代价。它是一种贪心算法。
4. Prim算法:用于找到一个无向图的最小生成树,即连接所有节点的最小代价。它也是一种贪心算法。
5. 拓扑排序:用于确定一个有向无环图的节点的线性序列,使得对于每一条有向边 (u,v),在序列中节点u在节点v之前。它被广泛应用于编译器中。
这些算法在计算机科学中具有重要的应用,特别是在网络路由、计算机网络、编译器等领域。
字符串算法:
暴力匹配算法 KMP算法 BM算法 Sunday算法 哈希算法
暴力匹配算法、KMP算法、BM算法、Sunday算法和哈希算法都是字符串匹配算法。
暴力匹配算法是一种简单粗暴的做法,对于每个可能的起始位置,都尝试去匹配。时间复杂度为O(m*n)。
KMP算法是在暴力匹配算法的基础上进行优化,通过利用已知信息避免了一些不必要的比较。时间复杂度为O(m+n)。
BM算法和Sunday算法都是基于坏字符规则和好后缀规则的优化算法。BM算法通过建立坏字符表和好后缀表来移动模式串,时间复杂度为O(m+n)。Sunday算法在移动模式串时,利用了主串中下一位字符的信息,时间复杂度为O(m*n)。
哈希算法将字符串转换成一个哈希值,通过比较哈希值来判断是否匹配。时间复杂度为O(m+n)。如果哈希冲突率足够低,哈希算法速度会非常快。
三:重点算法总结
算法是计算机科学中非常重要的一部分,它可以被应用到许多不同的领域,例如计算机视觉、自然语言处理、机器学习、网络安全等。在现代科技领域中,算法已经成为了我们处理大量数据和解决复杂问题的必备工具。
程序员的工作也离不开算法,无论是开发应用程序还是系统,都需要运用算法来完成任务。因此,程序员需要掌握广泛的算法种类和知识点,如排序算法、搜索算法、图论算法、动态规划、贪心算法等等。
算法的重要性也在于它们可以帮助程序员提高代码效率,减少时间和空间复杂度,提高程序性能和稳定性。同时,熟练掌握算法也可以帮助程序员更好地解决实际问题,并且通过算法的学习和实践,可以提高程序员的深度思考和分析问题的能力。
总之,算法在计算机科学中占有重要地位,程序员需要不断学习和研究算法,掌握不同种类的算法,在解决问题的过程中合理运用算法,以提高代码效率并解决实际问题