从零开始的PyTorch【01】:环境配置与初探索
什么是PyTorch?
PyTorch是一个开源的深度学习框架,由Facebook’s AI Research lab(FAIR)开发。它的设计目标是使深度学习的研究和开发变得更加容易和灵活。与其他框架相比,PyTorch的动态计算图(Dynamic Computation Graph)使得它更具可操作性和调试友好性,这也是很多研究人员和开发者钟爱它的原因。
为什么选择PyTorch?
- 易于上手:PyTorch的语法简洁、易于理解,特别适合刚接触深度学习的初学者。
- 动态计算图:不同于TensorFlow的静态计算图,PyTorch允许你在运行时定义和调整模型,这使得调试和实验变得更加直观。
- 社区支持:PyTorch有着活跃的社区支持,丰富的文档和教程能帮助你快速解决遇到的问题。
安装PyTorch
开始之前,你需要在你的机器上安装PyTorch。安装方法根据你的操作系统和硬件配置(CPU或GPU)有所不同。通常,我们推荐使用pip
或conda
进行安装。
使用pip安装:
pip install torch torchvision torchaudio
使用conda安装:
conda install pytorch torchvision torchaudio -c pytorch
你可以通过访问PyTorch官网来获取适合你系统的详细安装指引。
Jupyter Notebook的安装与使用
在学习深度学习过程中,Jupyter Notebook 是一个非常有用的工具。它不仅可以帮助你编写和测试代码,还可以非常方便地记录你的学习过程,进行可视化展示。Jupyter Notebook的交互式环境非常适合进行深度学习的实验,因为你可以逐行运行代码并立即查看结果,这对于调试和理解复杂的模型结构非常有帮助。
安装Jupyter Notebook:
如果你已经安装了conda
,可以通过以下命令安装Jupyter Notebook:
conda install -c conda-forge notebook
或者使用pip
安装:
pip install notebook
安装完成后,你可以通过以下命令启动Jupyter Notebook:
jupyter notebook
这将会在你的默认浏览器中打开一个新页面,显示当前目录下的文件结构。你可以创建一个新的Notebook,选择Python 3
作为内核,并开始你的深度学习之旅。
什么是张量?
在深度学习和PyTorch中,张量(Tensor) 是最基础的数据结构。你可以把它看作是一个多维数组或矩阵。张量与Numpy中的ndarray
非常相似,但它更强大,能够在GPU上运行,从而加速计算。
张量的维度:
- 标量(0维张量):一个单一的数值,如
3
或-7.5
。 - 向量(1维张量):一组数值,例如
[1.0, 2.0, 3.0]
,这相当于一个一维数组。 - 矩阵(2维张量):一个二维的数值表格,例如
[[1.0, 2.0], [3.0, 4.0]]
。 - 更高维的张量:例如三维张量可以用来表示彩色图像(通道、宽度、高度)。
张量是深度学习中表示和操作数据的基本单元。无论你是在定义模型的参数,还是在处理输入输出数据,张量都是不可或缺的。
第一个PyTorch程序
要真正理解一个深度学习框架,最好的方式就是动手实践。我们从一个简单的程序开始,它将帮助你理解PyTorch的基本操作。
- 启动Jupyter Notebook后,创建一个新的Notebook文件。
- 选择内核,即指定装有pytorch的python环境。
- 在第一个单元格中输入以下代码并运行:
import torch
# 创建一个张量
x = torch.tensor([1.0, 2.0, 3.0])
y = torch.tensor([4.0, 5.0, 6.0])
# 张量加法
z = x + y
print("x:", x)
print("y:", y)
print("z:", z)
解析:
- 导入PyTorch库:我们首先需要导入
torch
库,这是使用PyTorch进行所有操作的基础。 - 创建张量:张量是PyTorch的核心数据结构,类似于Numpy中的数组,但更加强大。这里我们创建了两个简单的张量
x
和y
。 - 张量加法:这一步展示了PyTorch中张量的基本运算。你可以看到,操作是直观的,结果直接通过
print
输出。
理解自动求导(Autograd)
深度学习的一个关键部分是梯度计算,而PyTorch提供了自动求导工具Autograd
。让我们来看一个简单的示例,了解如何使用Autograd
计算梯度。
import torch
# 创建一个张量,并设置requires_grad=True以便追踪梯度
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
# 定义一个简单的函数y = x^2
y = x ** 2
# 计算梯度
y.backward(torch.tensor([1.0, 1.0, 1.0]))
# 输出x的梯度
print(x.grad)
解析:
- 梯度追踪:通过设置
requires_grad=True
,我们告诉PyTorch这个张量需要计算和存储梯度。 - 反向传播:调用
y.backward()
,计算函数y
关于x
的梯度,并将其存储在x.grad
中。 - 查看结果:输出的
x.grad
就是y
关于x
的导数,即梯度。
小结
在这篇文章中,我们初步了解了PyTorch是什么以及它的基本操作。我们从安装开始,编写了第一个简单的PyTorch程序,并探索了PyTorch的核心功能之一:自动求导。此外,我们还介绍了Jupyter Notebook的使用方法及其在学习深度学习中的重要性。作为学习的一部分,我建议你反复实验和尝试不同的操作,这样才能更好地理解和掌握PyTorch。
下一篇文章中,我们将深入探讨如何构建一个简单的神经网络,并使用PyTorch进行训练和优化。敬请期待!
课后练习
为了巩固今天的学习内容,我为你准备了一些简单的练习:
- 创建两个不同维度的张量,并尝试进行加法操作,观察输出。
- 使用
Autograd
计算一个复杂函数的梯度,例如y = x^3 + 2x^2 + x
,并理解每一步的梯度含义。
如果在练习过程中遇到问题,欢迎随时留言讨论。希望你能享受PyTorch学习的过程,加油!