【面试】Decoder阶段的多头自注意力和Encoder的多头自注意力有什么区别?

面试官提问:Decoder阶段的多头自注意力和Encoder的多头自注意力有什么区别?

面试者回答:

在Transformer模型中,EncoderDecoder 阶段都使用了多头自注意力机制,但它们的具体功能和操作有所不同。特别是在解码阶段,多头自注意力有一些特殊的设计,以适应生成任务的需求。

1. 功能和任务的区别

  • Encoder的多头自注意力

    • 主要任务是编码输入序列中的信息。Encoder的多头自注意力可以看作是对整个输入序列进行全局依赖建模,它没有任何限制,因此每个词都可以关注序列中的任何位置(包括当前词和之前的词)。
    • 主要用于捕捉输入序列中的上下文关系,通过让每个输入词能够与序列中的其他词进行关联,形成更加丰富的上下文表示。
  • Decoder的多头自注意力

    • Decoder的多头自注意力作用在目标序列(已经生成的部分)上,负责生成输出序列的下一个词。因此,它的任务是根据已经生成的部分来预测下一个词。
    • 与Encoder不同,Decoder的自注意力需要加入遮掩机制(masking),以确保生成过程中不会看到未来词(即目标序列中还未生成的词)。这样可以防止在生成时提前利用未来信息,保持生成过程的因果性。

2. 遮掩机制(Masking)

  • Encoder的多头自注意力没有任何遮掩机制,每个词都可以自由地与其他词进行交互。这是因为编码阶段只需要提取输入序列的全局特征,没有因果顺序的限制。

  • Decoder的多头自注意力采用了因果遮掩(causal masking),即在计算注意力时,只允许当前词及其之前的词进行交互,而不允许看到之后的词。这种遮掩机制是通过将未生成的词的注意力值设置为负无穷大来实现的,从而使其权重为0。这样可以确保在生成输出序列时,保持顺序性,避免模型在生成某个词时直接访问将来词的信息。

3. 模型结构中的区别

  • Encoder中的多头自注意力只依赖于输入序列中的信息,不涉及其他模块。

  • Decoder中的多头自注意力除了自注意力层,还会额外有一个交叉注意力层(cross-attention layer)。这个交叉注意力层的作用是让Decoder可以访问Encoder编码的输入序列的隐藏表示,从而结合输入序列的信息来生成输出序列。这意味着Decoder不仅要关注自身(已生成的部分),还要参考输入序列来做出更加合理的预测。

4. 训练和生成过程的差异

  • Encoder的多头自注意力在训练和推理阶段没有区别,因为它总是可以访问整个输入序列。

  • Decoder的多头自注意力训练阶段,目标序列是已知的,模型可以并行处理整个序列;但在推理阶段,目标序列是逐步生成的,模型只能依赖已经生成的部分,因此需要依次计算每一个新词的注意力。

5. 总结:Encoder与Decoder的多头自注意力的主要区别

  • Encoder的自注意力没有任何限制,可以对输入序列的所有位置进行全局关注。
  • Decoder的自注意力引入了因果遮掩机制,确保每个词只能关注到当前词及其之前的词,保证生成过程的顺序性。
  • Decoder还会使用交叉注意力层,通过Encoder的输出表示与生成的目标序列共同作用来生成新的输出。
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
是的,在Transformer中有多头注意力机制和交叉注意力机制。 多头注意力机制是指将输入分成多个头,每个头都进行注意力计算,最后将它们合并在一起。这种方法可以使模型更好地捕捉输入中的不同特征,从而提高模型的性能。 交叉注意力机制是指在编码器和解码器之间引入注意力机制,以便解码器可以在生成输出时关注编码器中的不同部分。这种方法可以帮助模型更好地理解输入和输出之间的关系,从而提高模型的性能。 下面是一个使用多头注意力机制和交叉注意力机制的Transformer模型的示例代码: ```python import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # 定义一个多头注意力层 class MultiHeadAttention(layers.Layer): def __init__(self, embed_dim, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.embed_dim = embed_dim if embed_dim % num_heads != 0: raise ValueError( f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}" ) self.projection_dim = embed_dim // num_heads self.query_dense = layers.Dense(embed_dim) self.key_dense = layers.Dense(embed_dim) self.value_dense = layers.Dense(embed_dim) self.combine_heads = layers.Dense(embed_dim) def attention(self, query, key, value): score = tf.matmul(query, key, transpose_b=True) dim_key = tf.cast(tf.shape(key)[-1], tf.float32) scaled_score = score / tf.math.sqrt(dim_key) weights = tf.nn.softmax(scaled_score, axis=-1) output = tf.matmul(weights, value) return output, weights def separate_heads(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, inputs): # 获取输入 query, key, value, mask = inputs["query"], inputs["key"], inputs["value"], inputs["mask"] batch_size = tf.shape(query)[0] # 将输入通过全连接层进行变换 query = self.query_dense(query) key = self.key_dense(key) value = self.value_dense(value) # 将输入分成多个头 query = self.separate_heads(query, batch_size) key = self.separate_heads(key, batch_size) value = self.separate_heads(value, batch_size) # 计算注意力 attention, weights = self.attention(query, key, value) # 将多个头合并在一起 attention = tf.transpose(attention, perm=[0, 2, 1, 3]) concat_attention = tf.reshape(attention, (batch_size, -1, self.embed_dim)) output = self.combine_heads(concat_attention) return output # 定义一个Transformer模型 class Transformer(keras.Model): def __init__(self, num_layers, embed_dim, num_heads, fully_connected_dim, input_vocab_size, target_vocab_size, dropout_rate=0.1): super(Transformer, self).__init__() self.embed_dim = embed_dim self.num_layers = num_layers # 定义编码器 self.encoder = keras.Sequential( [layers.Embedding(input_vocab_size, embed_dim),] + [ layers.Dropout(dropout_rate), layers.LayerNormalization(epsilon=1e-6), layers.Dense(fully_connected_dim, activation="relu"), layers.Dropout(dropout_rate), layers.LayerNormalization(epsilon=1e-6), MultiHeadAttention(embed_dim, num_heads), layers.Dropout(dropout_rate), layers.LayerNormalization(epsilon=1e-6), layers.Dense(embed_dim, activation="relu"), layers.Dropout(dropout_rate), layers.LayerNormalization(epsilon=1e-6), ] * num_layers ) # 定义解码器 self.decoder = keras.Sequential( [layers.Embedding(target_vocab_size, embed_dim),] + [ layers.Dropout(dropout_rate), layers.LayerNormalization(epsilon=1e-6), layers.Dense(fully_connected_dim, activation="relu"), layers.Dropout(dropout_rate), layers.LayerNormalization(epsilon=1e-6), MultiHeadAttention(embed_dim, num_heads), layers.Dropout(dropout_rate), layers.LayerNormalization(epsilon=1e-6), MultiHeadAttention(embed_dim, num_heads), layers.Dropout(dropout_rate), layers.LayerNormalization(epsilon=1e-6), layers.Dense(embed_dim, activation="relu"), layers.Dropout(dropout_rate), layers.LayerNormalization(epsilon=1e-6), ] * num_layers ) # 定义输出层 self.final_layer = layers.Dense(target_vocab_size) def call(self, inputs): # 获取输入 input_seq, target_seq, enc_padding_mask, look_ahead_mask, dec_padding_mask = inputs # 将输入通过编码器 enc_output = self.encoder(input_seq) # 将编码器的输出通过解码器 dec_output = self.decoder( target_seq, attention_mask=look_ahead_mask, encoder_output=enc_output ) # 将解码器的输出通过输出层 final_output = self.final_layer(dec_output) return final_output # 创建一个Transformer模型 transformer = Transformer( num_layers=2, embed_dim=32, num_heads=2, fully_connected_dim=32, input_vocab_size=1000, target_vocab_size=1000, dropout_rate=0.1, ) # 定义输入 input_seq = tf.random.uniform((64, 10), dtype=tf.int64, minval=0, maxval=200) target_seq = tf.random.uniform((64, 10), dtype=tf.int64, minval=0, maxval=200) enc_padding_mask = tf.random.uniform((64, 1, 1, 10), dtype=tf.float32, minval=0, maxval=1) look_ahead_mask = tf.random.uniform((64, 1, 10, 10), dtype=tf.float32, minval=0, maxval=1) dec_padding_mask = tf.random.uniform((64, 1, 1, 10), dtype=tf.float32, minval=0, maxval=1) # 运行模型 output = transformer( inputs=(input_seq, target_seq, enc_padding_mask, look_ahead_mask, dec_padding_mask) ) print(output.shape) # 输出:(64, 10, 1000) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值