在让人工智能变得更好的竞赛中,麻省理工学院(MIT)林肯实验室正在开发降低功耗、高效训练和透明能源使用的方法。
在 Google 上搜索航班时,您可能已经注意到,现在每个航班的碳排放量估算值都显示在其成本旁边。这是一种告知客户其对环境影响的方式,并让他们将这些信息纳入决策中。
尽管计算机行业的碳排放量超过了整个航空业的碳排放量,但这种透明度尚不存在。这种能源需求不断升级的是人工智能模型。像ChatGPT这样巨大的流行模型预示着大规模人工智能的趋势,预测到2030年,数据中心将消耗全球21%的电力供应。
麻省理工学院(MIT)林肯实验室超级计算中心(LLSC)正在开发技术,以帮助数据中心控制能源使用。他们的技术范围从简单但有效的更改,如调整硬件的功率上限,到采用可以在早期停止人工智能训练的新工具。至关重要的是,他们发现这些技术对模型性能的影响最小。
从更广泛的角度来看,他们的工作是动员绿色计算研究并促进透明文化。“能源感知计算并不是一个真正的研究领域,因为每个人都在保留他们的数据,”领导能源感知研究工作的LLSC高级职员Vijay G