蚂蚁集团CodeFuse 发布“图生代码”功能,支持产品设计图一键生成代码

4月11日,蚂蚁集团自研的智能研发平台CodeFuse推出“图生代码”新功能,支持开发人员用产品设计图一键生成代码,大幅提升前端页面的开发效率。目前相关功能正在内测。

和很多互联网公司一样,蚂蚁集团正在内部全面推行AI编程,使用CodeFuse支持日常研发工作的工程师达到50%以上,这些工程师提交的代码中10%由AI生成。

Gartner发布的2024年十大战略技术趋势指出:到2028年,75%的企业软件工程师将使用AI编程助手。蚂蚁CodeFuse就是这一趋势下的探索尝试。据介绍,CodeFuse 的功能覆盖了需求分析、编程开发、测试与构建、发布与运维、数据洞察等研发全链路,比如在开发测试阶段,通过代码补全、添加注释、解释代码、生成单测、代码优化等,帮助开发者更快、更轻松地编写代码。

目前,在蚂蚁内部,每周已有超五成程序员在日常研发中使用CodeFuse。CodeFuse生成的代码整体采纳率为30%,在生成单元测试场景采纳率可以达到50%。

蚂蚁智能研发平台CodeFuse覆盖AI研发全链路

此次发布的“图生代码”功能主要服务前端工程师。在互联网产品开发环节

管理后台HTML页面是Web开发中一种常见的实践,主要用于构建企业或组织内部的管理界面,具备数据监控、用户管理、内容编辑等功能。本文将探讨一套美观易用的二级菜单目录设计,帮助开发者创建高效且直观的后台管理系统。 HTML5:作为超文本标记语言的最新版本,HTML5增强了网页的互动性和可访问性,提供了更多语义元素,如<header>、<nav>、<section>、<article>等,有助于清晰地定义网页结构。在管理后台中,HTML5可用于构建页面布局,划分功能区域,并集成多媒体内容,如像、音频和视频。 界面设计:良好的管理后台界面应具备清晰的导航、一致的布局和易于理解的标。二级菜单目录设计能够有效组织信息,主菜单涵盖大类功能,次级菜单则提供更具体的操作选项,通过展开和折叠实现层次感,降低用户认知负担。 CSS:CSS是用于控制网页外观和布局的语言,可对HTML元素进行样式设置,包括颜色、字体、布局等。在管理后台中,CSS能够实现响应式设计,使页面在不同设备上具有良好的显示效果。借助CSS预处理器(如Sass或Less),可以编写更高效、模块化的样式代码,便于维护。 文件结构: guanli.html:可能是管理页面的主入口,包含后台的主要功能和布局。 xitong.html:可能是系统设置或配置页面,用于管理员调整系统参数。 denglu.html:登录页面,通常包含用户名和密码输入框、登录按钮,以及注册或忘记密码的链接。 image文件夹:存放页面使用的片资源,如标、背景等。 css文件夹:包含后台系统的样式文件,如全局样式表style.css或按模块划分的样式文件。 响应式设计:在移动设备普及的背景下,管理后台需要支持多种屏幕尺寸。通过媒体查询(Media Queries)和流式布局(Fluid Grids),可以确保后台在桌面、平板和手机上都能良好展示。
双闭环直流电机调速系统是一种高效且应用广泛的直流调速技术。通过设置转速环和电流环两个闭环,系统能够对电机的转速和电流进行精准控制,从而提升动态响应能力和稳定性,广泛应用于工业自动化领域。 主电路设计:主电路采用三相全控桥整流电路,将交流电转换为可调节的直流电,为电机供电。晶闸管作为核心元件,通过调节控制角α实现输出电压的调节。 元部件设计:包括整流变压器、晶闸管、电抗器等元件的设计与参数计算,这些元件的性能直接影响系统的稳定性和效率。 保护电路:设计过载保护、短路保护等保护电路,确保系统安全运行。 驱动电路:设计触发电路和脉冲变压器,触发电路用于触发晶闸管导通,脉冲变压器用于传递触发信号。 控制器设计:系统核心为转速调节器(ASR)和电流调节器(ACR),分别对转速和电流进行调控。检测电路用于采集实际转速和电流值并反馈给调节器。 仿真分析:利用MATLAB/SIMULINK等工具对系统进行仿真分析,验证其稳定性和性能指标是否达标。 方案确定与框绘制:明确系统构成及各模块连接方式。 主电路设计:选择整流电路形式,设计整流变压器、晶闸管等元部件并计算参数。 驱动电路设计:设计触发电路和脉冲变压器,确保晶闸管准确触发。 控制器设计: 转速调节器(ASR):根据转速指令调整实际转速。 电流调节器(ACR):根据ASR输出指令调整电流,实现快速响应。 参数计算:计算给定电压、调节器、检测电路、触发电路和稳压电路的参数。 仿真分析:通过软件模拟系统运行状态,评估性能。 电气原理绘制:完成调速控制电路的电气原理绘制。 双闭环控制策略:转速环在外,电流环在内,形成嵌套结构,提升动态响应能力。 晶闸管控制角调节:通过改变控制角α调节输出电压,实现转速平滑调节。 仿真分析:借助专业软件验证设计的合理性和有效性。 双闭环直流电机调速系统设计涉及主电路、驱动电路和控制器设计等多个环节,通过仿
电池管理系统(Battery Management System,简称BMS)是电动汽车及储能系统的关键部件,主要负责监控、保护、控制和优化电池组性能。本文重点探讨基于Simulink构建的BMS模型。Simulink是Matlab环境下一款强大的数学建模工具,广泛应用于工程仿真与控制设计,其可视化平台让复杂系统如电池BMS的设计和测试更加直观。 电池均衡是BMS的核心功能之一,旨在确保电池组中各单体电池电压和容量一致,避免因个别电池过充或过放影响系统性能。在Simulink模型中,电池均衡可通过电流注入或能量转移实现,涉及电流控制电路和算法的建模,例如电阻分压、电感平衡或开关电容等方法。 SOC计算(State of Charge,即电池荷电状态)也是BMS的重要功能,它是评估电池剩余能量的关键指标。在BMS模型中,SOC估算通常基于电池的电压、电流、温度数据以及特定电池模型,如阶跃响应模型、等效电路模型或基于物理的模型。这些模型能够精准跟踪电池状态,为充电策略和故障检测提供依据。 在相关文件中,“license.txt”可能包含Simulink模型的使用许可信息,这对于模型的商业应用和合规性至关重要。“batteryBalancing”文件可能是电池均衡模块的具体实现,详细描述了Simulink构建的均衡算法,包括均衡触发条件、控制逻辑及电路模型等。 一个完整的BMS Simulink模型还应涵盖电池健康状态(SOH,State of Health)估计、热管理、安全保护(如过压、欠压、过流保护等)以及通信接口(用于与车辆其他系统交互)等功能模块。这些模块需要精心设计和参数校准,以确保BMS在各种工况下保持稳定性和准确性。 在开发BMS模型时,用户可以借助Matlab的Simulink库,如控制库、信号处理库和电力电子库,并结合电池特性的实验数据进行模型搭建和仿真验证。
YOLOv10-PyQt5-GUI识别扑克牌的花色和点数-检测游戏开发和娱乐应用+数据集+训练好的模型+pyqt5可视化界面包含pyqt可视化界面,有使用教程 1. 内部包含标注好的目标检测数据集,分别有yolo格式(txt文件)和voc格式标签(xml文件), 共1285张像, 已划分好数据集train,val, test,并附有data.yaml文件可直接用于yolov5,v8,v9,v10,v11,v12等算法的训练; 2. yolo目标检测数据集类别名:poker-cards(扑克牌),包括 10_Diamonds(方块10)、10_Hearts(红心10)、10_Spades(黑桃10)、10_Trefoils(梅花10)、2_Diamonds(方块2)、2_Hearts(红心2)、2_Spades(黑桃2)、2_Trefoils(梅花2)、3_Diamonds(方块3)、3_Hearts(红心3)、3_Spades(黑桃3)、3_Trefoils(梅花3)、4_Diamonds(方块4)、4_Hearts(红心4)、4_Spades(黑桃4)、4_Trefoils(梅花4)、5_Diamonds(方块5)、5_Hearts(红心5)、5_Spades(黑桃5)、5_Trefoils(梅花5)、6_Diamonds(方块6)、6_Hearts(红心6)、6_Spades(黑桃6)、6_Trefoils(梅花6)、7_Diamonds(方块7)、7_Hearts(红心7)、7_Spades(黑桃7)、7_Trefoils(梅花7)、8_Diamonds(方块8)、8_Hearts(红心8)、8_Spades(黑桃8)、8_Trefoils(梅花8)、9_Diamonds(方块9)、9_Hearts(红心9)、9_Spades(黑桃9)、9_Trefoils(梅花9)、A_Diamonds(方块A)、A_Hearts(红心A)、A_Spades(黑桃A)、A_Trefoils(梅花A)、J_Diamonds(方块J)、J_Hearts(红心J)、J_Spades(黑桃J)、J_Trefoils(梅花J)、K_Diamonds(方块K)、K_Hearts(红心K)、K_Spades(黑桃K)、K_Trefoils(梅花K)、Q_Diamonds(方块Q)、Q_Hearts(红心Q)、Q_Spades(黑桃Q)、Q_Trefoils(梅花Q)等 3. yolo项目用途:识别扑克牌的花色和点数,用于游戏开发和娱乐应用 4. 可视化参考链接:https://blog.csdn.net/weixin_51154380/article/details/126395695?spm=1001.2014.3001.5502
### 生成模型微调实战代码示例 对于生成模型的微调,可以采用类似于LoRA的方法,在已有预训练模型的基础上进行调整。下面提供了一个基于PyTorch框架下的简单实例,该实例假设已经有一个预训练好的生成对抗网络(GAN),现在希望通过少量的数据对该网络做进一步优化。 #### 准备工作 首先安装必要的库: ```bash pip install torch torchvision matplotlib numpy ``` 加载并准备数据集: ```python import torch from torchvision import datasets, transforms transform = transforms.Compose([ transforms.Resize((64, 64)), # 调整片大小至适合输入给定模型的形式 transforms.ToTensor(), # 将PIL Image 或者numpy.ndarray转换为tensor,并且归一化到[0,1]区间 ]) dataset = datasets.ImageFolder(root='./data', transform=transform) # 假设本地有名为'data'的文件夹存储着用于微调的数据集 dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True) ``` 定义生成器和判别器结构以及初始化权重: ```python class Generator(torch.nn.Module): def __init__(self): super(Generator, self).__init__() # 定义生成器的具体架构... def forward(self, input): output = ... # 正向传播过程 return output class Discriminator(torch.nn.Module): def __init__(self): super(Discriminator, self).__init__() # 定义判别器的具体架构... def forward(self, input): output = ... # 正向传播过程 return output # 加载预训练模型参数 generator = Generator() discriminator = Discriminator() pretrained_dict = torch.load('path_to_pretrained_weights.pth') # 预训练权重路径 model_dict = generator.state_dict() | discriminator.state_dict() # 过滤掉不必要的键值对 pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} model_dict.update(pretrained_dict) generator.load_state_dict(model_dict) discriminator.load_state_dict(model_dict) ``` 设置超参数与损失函数: ```python lr = 0.0002 # 学习率 num_epochs = 5 # 训练轮数 criterion = torch.nn.BCELoss() # 使用二元交叉熵作为损失函数 optimizer_g = torch.optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 0.999)) optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5, 0.999)) ``` 执行训练循环: ```python for epoch in range(num_epochs): for i, (images, _) in enumerate(dataloader): real_labels = torch.ones(images.size(0), 1).cuda() fake_labels = torch.zeros(images.size(0), 1).cuda() images = images.cuda() # 更新D网络: maximize log(D(x)) + log(1 - D(G(z))) optimizer_d.zero_grad() outputs = discriminator(images) d_loss_real = criterion(outputs, real_labels) real_score = outputs z = torch.randn(batch_size, latent_dim, 1, 1).cuda() fake_images = generator(z) outputs = discriminator(fake_images.detach()) d_loss_fake = criterion(outputs, fake_labels) fake_score = outputs d_loss = d_loss_real + d_loss_fake d_loss.backward() optimizer_d.step() # 更新G网络: minimize log(1 - D(G(z))) -> maximize log(D(G(z))) optimizer_g.zero_grad() fake_images = generator(z) outputs = discriminator(fake_images) g_loss = criterion(outputs, real_labels) g_loss.backward() optimizer_g.step() if (i+1)%200==0: print(f'Epoch [{epoch}/{num_epochs}], Step[{i+1}/{len(dataloader)}], ' f'd_loss:{d_loss.item():.4f}, g_loss:{g_loss.item():.4f}, ' f'D(real):{real_score.mean().item()}, D(fake):{fake_score.mean().item()}') torch.save(generator.state_dict(), './checkpoint/generator_final.pth') # 保存最终版本的生成器状态字典 ``` 上述代码片段展示了一种基础的方式来进行生成模型的微调[^2]。需要注意的是实际应用中可能还需要考虑更多细节比如正则项的选择、不同类型的激活函数等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凭空起惊雷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值