AI重建粒子轨迹,发现新物理学

波兰科学院核物理研究所 (IFJ PAN) 的科学家通过研究表明,使用人工智能构建的工具可能是当前快速重建粒子轨迹方法的有效替代方法。它们的首次亮相可能会在未来两到三年内出现,或许是在支持寻找新物理的 MUonE 实验中。

电子学在核物理领域从来都不是一帆风顺的。大型强子对撞机作为全球最强大的加速器,所产生的数据如此之多,使得全部记录这些数据从来都不是一个可行的选择。

因此,处理来自探测器的信号波的系统擅长于「遗忘」——它们在不到一秒的时间内重建次级粒子的轨迹,并评估刚刚观察到的碰撞是否可以被忽略,或者是否值得保存以供进一步分析。然而,当前重建粒子轨迹的方法很快将不再足够。

波兰科学院核物理研究所 (IFJ PAN) 的科学家通过研究表明,使用人工智能构建的工具可能是当前快速重建粒子轨迹方法的有效替代方法。它们的首次亮相可能会在未来两到三年内出现,或许是在支持寻找新物理的 MUonE 实验中。

该研究以《Machine Learning based Reconstruction for the MUonE Experiment》为题,于 2024 年 3 月 10 日发布在《Computer Science》上。

图片

论文链接:https://doi.org/10.7494/csci.2024.25.1.5690

过去几十年来,包括计算技术在内的高能物理(HEP)实验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凭空起惊雷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值