一、时间(Time)语义
1)Event Time:事件创建的时间;
2)Ingestion Time:数据进入Flink的时间;
3)Processing Time:执行操作算子的本地系统时间,与机器相关;
1、哪种时间语义更重要
1)不同的时间语义有不同的应用场合;
2)我们往往更关心事件时间(Event Time);
3)某些应用场合,不应该使用Processing Time
4)Event Time可以从日志数据的时间戳(timestamp)中提取
*****2017-11-02 18:37:15.624 INFO Fail over to rm
二、在代码中设置Event Time
1)我们可以直接在代码中,对执行环境调用setStreamTimeCharacteristic方法,设置流的时间特性;
2)具体时间,还需要从数据中提取时间戳(timestamp)
val env = StreamExecutionEnvironment.getExecutionEnvironment
// 从调用时刻开始给env创建的每一个stream追加时间特征
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
1、乱序数据的影响
1)当Flink以Event Time模式处理数据流时,它会根据数据里的时间戳来处理基于时间的算子;
2)由于网络、分布式等原因,会导致乱序数据的产生;
3)乱序数据会让窗口计算不准确;
2、水位线(Watermark)
》》怎样避免乱序数据带来计算不正确?
》》遇到一个时间戳达到了窗口关闭时间,不应该立刻触发窗口计算,而是等待一段时间,等迟到的数据来了再关闭窗口;
1)Watermark是一种衡量Event Time进展的机制,可以设定延迟触发;
2)Watermark是用于处理乱序事件的,而正确的处理乱序事件,通常用Watermark机制结合window来实现;
3)数据流中的Watermark用于表示timestamp小于Watermark的数据,都已经到达了,因此,window的执行也是由Watermark 触发的;
4)Watermark用来让程序自己平衡延迟和结果正确性;
3、Watermark的特点
1)Watermark是一条特殊的数据记录
2)Watermark必须单调递增,以确保任务的事件时间时钟在向前推进,而不是在后退;
3)Watermark与数据的时间戳相关;
4、Watermark的传递
5、Watermark的引入
1)Event Time的使用一定要指定数据源中的时间戳;
2)调用assignTimestampAndWatermarks方法,传入一个BoundedOutOfOrdernessTimestampExtractor,就可以指定watermark
3)对于排好序的数据,不需要延迟触发,可以只指定时间戳就行了
// 注意单位是毫秒,所以根据时间戳的不同,可能需要乘1000
dataStream.assignAscendingTimestamps(_.timestamp * 1000)
4)Flink暴露了TimestampAssigner接口供我们实现,使我们可以自定义如何从事件数据中抽取时间戳和生成Watermark
dataStream.assignTimestampsAndWatermarks(new MyAssigner())
// MyAssigner可以有两种类型,都继承自TimestampAssigner
6、TimestampAssigner
1)定义了抽取时间戳,以及生成Watermark的方法,有两种类型:
**1** AssignerWithPeriodicWatermarks
**** 周期性的生成Watermark:系统会周期性的将Watermark插入到流中;
**** 默认周期是200毫秒,可以使用ExecutionConfig.setAutoWatermarkInterval()方法进行设置;
**** 升序和前面乱序的处理BoundedOutOfOrderness,都是基于周期性Watermark的。
**2** AssignerWithPunctuatedWatermarks
**** 没有时间周期规律,可打断的生成Watermark;
7、Watermark的设定
1)在Flink中,Watermark由应用程序开发人员生成,这通常需要对相应的领域有一定的了解;
2)如果Watermark设置的延迟太久,收到结果的速度可能就会很慢,解决办法是在水位线到达之前输出一个近似结果;
3)而如果Watermark到达得太早,则可能收到错误结果,不过Flink处理迟到数据的机制可以解决这个问题;