跳表分析与实现

版权声明:本文为博主原创文章,允许转载,转载请注明出处。 https://blog.csdn.net/LF_2016/article/details/74999564

一、什么是跳表
跳表全称叫做跳跃表,简称跳表。跳表是一个随机化的数据结构,可以被看做二叉树的一个变种,它在性能上和红黑树,AVL树不相上下,但是跳表的原理非常简单,目前在Redis和LeveIDB中都有用到。
在对有序顺序表进行搜索时,使用二分查找时间复杂度是O(logn),但是有序顺序表的插入和删除却是O(n)的算法。
在对有序链表进行搜索时,时间复杂度是O(n),但是对链表的插入算法却是O(1)。
可以看到有序顺序表和链表各有各的优势,同时也有自身的缺点,而我们要讲的跳跃表就是集成了以上两种数据结构的优点,但是自身多耗费一部分空间的数据结构。

二、跳表的原理
跳表的原理非常简单,跳表其实就是一种可以进行二分查找的有序链表。跳表的数据结构模型如图:
这里写图片描述

可以看到,跳表在原有的有序链表上面增加了多级索引,通过索引来实现快速查找。首先在最高级索引上查找最后一个小于当前查找元素的位置,然后再跳到次高级索引继续查找,直到跳到最底层为止,这时候以及十分接近要查找的元素的位置了(如果查找元素存在的话)。由于根据索引可以一次跳过多个元素,所以跳查找的查找速度也就变快了。
最理想的情况下,跳表就像一颗满二叉树,查找的时间复杂度是O(logn)。问题 是怎么决定一个结点有多少级索引???
针对这个问题跳表的创始人提出了一种抛硬币的方法,用随机函数产生一个0或者1,如果是1的话则leve++,直到产生0位置,当数据量足够大的时候,leve的取值会趋向于正态分布。

三、跳表与红黑树,AVL树等平衡数据结构的比较
跳表与红黑树和AVL树相比,效率不相上下,但是它胜在实现起来比较简单,我们可以很快的实现出来。跳表在更新的时候需要改动的地方很少,而红黑树和AVL树需要改动的地方很多。如果在多线程的情况下,红黑树和AVL树在维持平衡的时候,需要的锁资源很多,越是在靠近根节点的地方越容易产生竞争。但是跳表的操作更加局部性一点,需要锁住的资源很少。

四、跳表的实现
跳表的性质:
1、由很多层组成
2、每一层都是一个有序链表
3、最底层的链表包含所有元素
4、如果一个元素出现在第i层的链表中,则它在i-1层中也会出现。
5、上层节点可以跳转到下层。
跳表的实现:

#ifndef _SKIPLIST_H__
#define _SKIPLIST_H__
#include<time.h>
#include<iostream>
#include<vector>
#include<cstdio>
#include<cstdlib>
using namespace std;
#define MAXLEVE 8                                             //跳表的最大层数

template<typename K,typename V>
struct SkipNode                                               //跳表的节点类型
{
   K _key;            
   V _value;  
   size_t _sz;                                                //表示该节点的层数
   vector<SkipNode<K,V> *> _pleve;                            //存放每一层的指针
   SkipNode(K key=K(),V value=V(),size_t sz=size_t())        
       :_key(key)
        ,_value(value)
        ,_sz(sz)
    {
        _pleve.resize(0);
        for(size_t i=0;i<sz;i++)
        {
            _pleve.push_back(NULL);
        }
    }

   ~SkipNode()
   {
        _key=-1;
        _value=-1;
        _sz=-1;
        _pleve.clear();
   }
};

template<typename K,typename V>
class SkipList                                               //跳表类
{
public:
    typedef SkipNode<K,V> Node;
    SkipList();
    void Insert(K key,V value);
    bool Find(K key,V& value);
    bool Erase(K key);
    void Print();
    int GetLeve();                                            //返回跳表的最大层数
    size_t Size();
    ~SkipList();
private:
    int Random();                                             //产生随机层数的函数
protected:                                      
    SkipList(SkipList<K,V> &);                                //防拷贝
    SkipList<K,V>& operator=(SkipList<K,V>);                  //防赋值
private:
    Node *_head;
    int _maxLeve;                                             //记录跳表的最大层数
    int _size;                                                //记录跳表最底层元素的个数
};
#endif    //_SKIPLIST_H__


template<typename K,typename V>
size_t SkipList<K,V>::Size()
{
    return _size;
}

template<typename K,typename V>
int SkipList<K,V>::GetLeve()
{
    return _maxLeve;
}

template<class K,class V>
int SkipList<K,V>::Random()
{
    int leve=1;
    while(rand()%2&&leve<=MAXLEVE)                 //产生0或1,1的话leve++,最后平均下来leve的值趋向与正态分布
    {
        leve++;
    }
    return leve;
}

template<typename K,typename V>
SkipList<K,V>::SkipList()
{
    _maxLeve=1;
    _size=0;
    _head=new Node(-1,-1,MAXLEVE);
}

template<typename K,typename V>
void SkipList<K,V>::Insert(K key,V value)
{
    int i=_maxLeve-1;
    int j=0;
    Node* cur=_head;                                     //指向跳表的起点
    Node* s[MAXLEVE];                                     //用来保存每层向下跳转位置的前驱
    while(i>=0)
    {
        while(cur->_pleve[i])
        {
            if(key>=cur->_pleve[i]->_key)
            {
                cur=cur->_pleve[i];
            }
            else
                break;
        }
        s[j++]=cur;
        i--;
    }

    i=0;                                            
    int leve=Random();                                    //产生一个随机层数
    _maxLeve<leve?_maxLeve=leve:_maxLeve;                 //更新跳表的最大层数
    Node* newNode=new Node(key,value,leve);                  //创建一个节点
    for(i=0;i<leve;i++)
    {
        if(i<j)   
        {
            newNode->_pleve[i]=s[j-i-1]->_pleve[i];
            s[j-i-1]->_pleve[i]=newNode;
        }
        else
        {
            _head->_pleve[i]=newNode;
        }
    }
    _size++;
}

template<typename K,typename V>
bool SkipList<K,V>::Find(K key,V& value)
{
    int i=_maxLeve-1;
    Node* cur=_head;                                     //指向跳表的起点
    while(i>=0)
    {
        while(cur->_pleve[i])
        {
            if(key>=cur->_pleve[i]->_key)
            {
                cur=cur->_pleve[i];
            }
            else
                break;
        }
        i--;
    }
    i=0;
    if(cur->_key==key)                                      //最好采用仿函数进行比较
    {
        value=cur->_value;
        return true;
    }
    return false;
}

template<typename K,typename V>
bool SkipList<K,V>::Erase(K key)
{
    int i=_maxLeve-1;
    int j=0;
    Node* cur=_head;                                     //指向跳表的起点
    Node* s[MAXLEVE];                                     //用来保存每层向下跳转位置的前驱
    while(i>=0)
    {
        while(cur->_pleve[i])
        {
            if(key>cur->_pleve[i]->_key)
            {
                cur=cur->_pleve[i];
            }
            else
                break;
        }
        s[j++]=cur;
        i--;
    }

    if(cur->_pleve[0]&&cur->_pleve[0]->_key==key)
    {
        cur=cur->_pleve[0];
        int leve=cur->_sz;
        Node *del=NULL;
        del=cur;
        for(i=0;i<leve;i++)                                //将该节点的每层都进行删除
        {
            s[j-i-1]->_pleve[i]=cur->_pleve[i];
        }
        delete del;

        while(_maxLeve>1)                                    //如果某一层只有头结点,则删除整层
        {
            if(NULL==_head->_pleve[_maxLeve-1])
                _maxLeve--;
            else
                break;
        }
        if(_size>0)
            _size--;
    }
    return false;
}

template<typename K,typename V>
void SkipList<K,V>::Print()
{
    int i=_maxLeve-1;
    while(i>=0)
    {
        Node* cur=_head;
        printf("this is %d leve:",i+1);
        while(cur)
        {
            cout<<cur->_key<<":"<<"["<<cur->_value<<"]"<<" ";
            cur=cur->_pleve[i];
        }
        i--;
        printf("\n");
    }
}

template<typename K,typename V>
SkipList<K,V>::~SkipList()
{
    Node* cur=_head;
    Node* del;
    while(cur)
    {
        del=cur;
        cur=cur->_pleve[0];
        delete del;
    }
    _head=NULL;
}


例:
#include"skiplist.hpp"
void test()
{
    {
        SkipList<int,int> s;
    //    s.Insert(1,1);
    //    s.Insert(3,3);
    //    s.Insert(2,2);
    //    s.Insert(4,4);
    //    s.Insert(5,5);
    //    s.Insert(6,6);
    //    s.Insert(7,7);
    //    s.Insert(8,8);
    //    s.Insert(9,9);
    //    s.Insert(10,10);
        s.Erase(6);
    //    s.Insert(11,11);
    //    s.Insert(12,12);
        s.Print();
        cout<<s.GetLeve()<<endl;;
        cout<<s.Size()<<endl;;
    }
    cout<<"destroy SkipList"<<endl;;
//    s.Erase(1);
//    s.Print();
//    s.Erase(2);
//    s.Print();
//    s.Erase(3);
//    s.Print();
//    int i=1;
//    for(i=1;i<13;i++)
//    {
//        printf("delete %d leve\n",i-1);
//        s.Erase(i);
//        s.Print();
//    }
//    cout<<endl;
//    s.Print();
//    int value=0;
//    int key=13;
//    if(s.Find(key,value))
//    {
//        cout<<"key="<<key<<",value is:"<<value<<endl;
//    }
//    else
//    {
//        cout<<"not found"<<endl;
//    }
}

int main()
{
    test();
    return 0;
}


没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试