General CF,Sequential Rec,Social Rec,kg-enhanced Rec,Multi-Behavior Recommendation介绍,并附上代码例子

我们分别介绍一下General Collaborative Filtering(通用协同过滤),Sequential Recommendation(序列推荐),Social Recommendation(社交推荐),和Knowledge Graph-Enhanced Recommendation(知识图谱增强推荐),并给出各自的例子和简单代码说明。

1. General Collaborative Filtering (通用协同过滤)

简介: 通用协同过滤利用用户和项目之间的交互数据(如评分、点击等),来预测用户可能喜欢的项目。它主要有两种类型:基于内存的协同过滤(如用户-用户和项目-项目协同过滤)和基于模型的协同过滤(如矩阵分解)。

例子: 一个电影推荐系统,根据用户对电影的评分,推荐用户可能喜欢的电影。

代码说明:

from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from surprise import Dataset, Reader, SVD
from surprise.model_selection import cross_validate

# 加载数据
data = Dataset.load_builtin('ml-100k')
trainset, testset = train_test_split(data.build_full_trainset().build_testset(), test_size=0.25)

# 使用SVD进行矩阵分解
algo = SVD()
algo.fit(data.build_full_trainset())

# 预测并评估
predictions = algo.test(testset)
rmse = mean_squared_error([pred.r_ui for pred in predictions], [pred.est for pred in predictions], squared=False)
print(f"RMSE: {rmse:.4f}")

2. Sequential Recommendation (序列推荐)

简介: 序列推荐根据用户的历史行为序列来推荐下一个可能感兴趣的项目。它捕捉用户行为的时间顺序和依赖关系。

例子: 一个电子商务网站,根据用户的浏览和购买历史,推荐下一件可能感兴趣的商品。

代码说明:

import numpy as np
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense

# 假设我们有用户行为序列数据
user_sequences = np.array([[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6]])
next_items = np.array([5, 6, 7])

# 创建序列推荐模型
model = Sequential()
model.add(Embedding(input_dim=10, output_dim=50, input_length=4))
model.add(LSTM(50))
model.add(Dense(10, activation='softmax'))

# 编译并训练模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy')
model.fit(user_sequences, next_items, epochs=10)

# 预测下一个项目
predictions = model.predict(np.array([[1, 2, 3, 4]]))
predicted_item = np.argmax(predictions)
print(f"Predicted next item: {predicted_item}")

3. Social Recommendation (社交推荐)

简介: 社交推荐利用社交网络中的信息(如朋友关系)来改进推荐效果。假设用户的朋友对某个项目感兴趣,那么该用户也可能会对该项目感兴趣。

例子: 一个音乐推荐系统,根据用户的朋友喜欢的音乐,推荐用户可能喜欢的音乐。

代码说明:

import networkx as nx
import numpy as np

# 假设我们有用户项目评分数据和社交网络数据
ratings = np.array([[1, 1, 5], [1, 2, 3], [2, 1, 4], [2, 3, 5]])
social_network = nx.Graph()
social_network.add_edges_from([(1, 2), (1, 3), (2, 4)])

# 简单的社交推荐实现
def social_recommend(user_id, top_n=2):
    friends = list(social_network.neighbors(user_id))
    friend_ratings = ratings[np.isin(ratings[:, 0], friends)]
    item_scores = {}
    for _, item, score in friend_ratings:
        if item in item_scores:
            item_scores[item] += score
        else:
            item_scores[item] = score
    recommended_items = sorted(item_scores, key=item_scores.get, reverse=True)[:top_n]
    return recommended_items

recommended_items = social_recommend(1)
print(f"Recommended items for user 1: {recommended_items}")

4. Knowledge Graph-Enhanced Recommendation (知识图谱增强推荐)

简介: 知识图谱增强推荐利用知识图谱中的结构化信息来改进推荐效果。知识图谱包含实体及其关系,可以提供额外的上下文信息来增强推荐系统的性能。

例子: 一个图书推荐系统,利用图书的知识图谱(如作者、类别、出版日期等)来推荐用户可能喜欢的图书。

代码说明:

import pandas as pd
import networkx as nx

# 假设我们有图书的知识图谱数据和用户-图书评分数据
books_kg = pd.DataFrame({
    'head': ['Book1', 'Book2', 'Book1', 'Book3'],
    'relation': ['author', 'category', 'category', 'author'],
    'tail': ['Author1', 'Category1', 'Category1', 'Author2']
})

ratings = pd.DataFrame({
    'user': [1, 1, 2, 2],
    'book': ['Book1', 'Book2', 'Book1', 'Book3'],
    'rating': [5, 3, 4, 5]
})

# 创建知识图谱
kg_graph = nx.from_pandas_edgelist(books_kg, source='head', target='tail', edge_attr='relation')

# 简单的知识图谱增强推荐实现
def kg_enhanced_recommend(user_id, top_n=2):
    user_ratings = ratings[ratings['user'] == user_id]
    kg_scores = {}
    for _, book, rating in user_ratings.itertuples():
        for neighbor in kg_graph.neighbors(book):
            if neighbor not in kg_scores:
                kg_scores[neighbor] = rating
            else:
                kg_scores[neighbor] += rating
    recommended_items = sorted(kg_scores, key=kg_scores.get, reverse=True)[:top_n]
    return recommended_items

recommended_items = kg_enhanced_recommend(1)
print(f"Recommended items for user 1: {recommended_items}")

这些示例和代码展示了四种不同推荐系统方法的基本原理和实现方法。根据具体应用场景,可以进一步优化和扩展这些方法。

Multi-Behavior Recommendation(多行为推荐) 是一种利用用户在平台上的多种行为(如点击、收藏、购买、评分等)进行推荐的方法。相比于仅使用单一行为的数据,多行为推荐能够捕捉用户更全面的兴趣和偏好,从而提高推荐的准确性。

主要特点

  1. 多种行为数据:包括点击、浏览、收藏、加购物车、购买等。
  2. 行为间的相互影响:不同的行为类型对推荐结果有不同的权重和影响。
  3. 更全面的用户画像:通过多种行为的分析,可以更全面地了解用户的兴趣和需求。

例子

在一个电子商务平台上,用户可能会进行多种行为,例如:

  • 点击:浏览商品详情页
  • 收藏:将商品添加到收藏夹
  • 购买:最终购买商品

通过分析这些不同的行为,可以推荐用户更可能感兴趣的商品。

代码说明

以下是一个简单的多行为推荐模型的实现示例,假设我们有用户的点击、收藏和购买行为数据。

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import LabelEncoder
from keras.models import Model
from keras.layers import Input, Embedding, Flatten, Concatenate, Dense

# 假设我们有用户行为数据
data = pd.DataFrame({
    'user_id': [1, 2, 3, 1, 2, 3],
    'item_id': [101, 102, 103, 104, 105, 106],
    'behavior_type': ['click', 'click', 'click', 'collect', 'collect', 'purchase'],
    'rating': [1, 1, 1, 2, 2, 3]  # 1=点击, 2=收藏, 3=购买
})

# 编码用户和项目ID
user_encoder = LabelEncoder()
item_encoder = LabelEncoder()
data['user_id'] = user_encoder.fit_transform(data['user_id'])
data['item_id'] = item_encoder.fit_transform(data['item_id'])

# 拆分训练集和测试集
train, test = train_test_split(data, test_size=0.2, random_state=42)

# 构建多行为推荐模型
user_input = Input(shape=(1,), name='user')
item_input = Input(shape=(1,), name='item')
behavior_input = Input(shape=(1,), name='behavior')

user_embedding = Embedding(input_dim=len(user_encoder.classes_), output_dim=8)(user_input)
item_embedding = Embedding(input_dim=len(item_encoder.classes_), output_dim=8)(item_input)
behavior_embedding = Embedding(input_dim=4, output_dim=8)(behavior_input)

user_vec = Flatten()(user_embedding)
item_vec = Flatten()(item_embedding)
behavior_vec = Flatten()(behavior_embedding)

concat = Concatenate()([user_vec, item_vec, behavior_vec])
dense = Dense(64, activation='relu')(concat)
output = Dense(1)(dense)

model = Model(inputs=[user_input, item_input, behavior_input], outputs=output)
model.compile(optimizer='adam', loss='mse')

# 训练模型
model.fit([train['user_id'], train['item_id'], train['behavior_type'].astype('category').cat.codes],
          train['rating'], epochs=10, batch_size=16)

# 评估模型
preds = model.predict([test['user_id'], test['item_id'], test['behavior_type'].astype('category').cat.codes])
rmse = mean_squared_error(test['rating'], preds, squared=False)
print(f"Test RMSE: {rmse:.4f}")

# 预测
user_id = 1
item_id = 101
behavior_type = 'click'
predicted_rating = model.predict([np.array([user_encoder.transform([user_id])[0]]),
                                  np.array([item_encoder.transform([item_id])[0]]),
                                  np.array([data['behavior_type'].astype('category').cat.categories.tolist().index(behavior_type)])])
print(f"Predicted rating for user {user_id} on item {item_id} with behavior {behavior_type}: {predicted_rating[0][0]:.4f}")

在这个示例中,我们使用了点击、收藏和购买行为来构建一个简单的多行为推荐模型。通过这种方法,可以捕捉用户的多种行为模式,提高推荐的准确性。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 用python写神经网络的代码,可以参考下面的例子:# 导入神经网络库 from tensorflow.keras import Sequential # 定义模型 model = Sequential() # 添加层 model.add(Dense(32, activation='relu', input_dim=32)) model.add(Dense(32, activation='relu')) model.add(Dense(1, activation='sigmoid'))# 编译模型 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])# 训练模型 model.fit(X, y, epochs=32, batch_size=32) ### 回答2: 神经网络是一种机器学习模型,可以用于解决分类或回归问题。下面是一个使用Python编写的简单神经网络代码,并附上注释解释代码的功能和实现方法。 ```python import numpy as np # 为了简化示例,假设我们要解决一个二分类问题 # 定义神经网络类 class NeuralNetwork: def __init__(self, input_size, hidden_size, output_size): # 初始化参数 self.W1 = np.random.randn(input_size, hidden_size) self.b1 = np.zeros((1, hidden_size)) self.W2 = np.random.randn(hidden_size, output_size) self.b2 = np.zeros((1, output_size)) def forward(self, X): # 前向传播计算,输入为X self.z1 = np.dot(X, self.W1) + self.b1 self.a1 = np.tanh(self.z1) self.z2 = np.dot(self.a1, self.W2) + self.b2 self.a2 = self.sigmoid(self.z2) return self.a2 def backward(self, X, y, learning_rate): # 反向传播计算并更新参数 m = X.shape[0] # 样本数 self.dz2 = self.a2 - y self.dW2 = np.dot(self.a1.T, self.dz2) / m self.db2 = np.sum(self.dz2, axis=0, keepdims=True) / m self.dz1 = np.dot(self.dz2, self.W2.T) * (1 - np.power(self.a1, 2)) self.dW1 = np.dot(X.T, self.dz1) / m self.db1 = np.sum(self.dz1, axis=0, keepdims=True) / m # 使用梯度下降法更新参数 self.W2 -= learning_rate * self.dW2 self.b2 -= learning_rate * self.db2 self.W1 -= learning_rate * self.dW1 self.b1 -= learning_rate * self.db1 def sigmoid(self, x): # 定义sigmoid激活函数 return 1 / (1 + np.exp(-x)) # 创建样本数据 X = np.array([[1, 0, 1], [0, 1, 0], [1, 1, 1], [0, 0, 1]]) y = np.array([[1], [0], [1], [0]]) # 创建神经网络实例 nn = NeuralNetwork(3, 4, 1) # 训练神经网络 epochs = 1000 learning_rate = 0.1 for i in range(epochs): # 前向传播计算输出 output = nn.forward(X) # 反向传播更新参数 nn.backward(X, y, learning_rate) # 预测新数据 new_data = np.array([[1, 0, 0]]) prediction = nn.forward(new_data) print(f"新数据的预测结果为:{prediction}") ``` 这个神经网络模型是一个单隐藏层的前馈神经网络,使用tanh作为隐藏层的激活函数,sigmoid作为输出层的激活函数。通过不断调整参数,控制损失函数最小化来实现分类任务。代码中的注释部分给出了对每个关键步骤的解释。 ### 回答3: 下面是一个使用Python编写的简单神经网络代码示例,附上了详细注释,帮助你理解每个步骤的作用。 ```python import numpy as np # 导入NumPy库,用于处理数组和矩阵运算 # 定义神经网络类 class NeuralNetwork: def __init__(self): # 设定随机的初始权重 np.random.seed(1) # 创建3x1的权重矩阵,取值范围[-1, 1] self.synaptic_weights = 2 * np.random.random((3, 1)) - 1 # 定义S型激活函数 def sigmoid(self, x): return 1 / (1 + np.exp(-x)) # 定义S型函数的导数 def sigmoid_derivative(self, x): return x * (1 - x) # 定义神经网络训练函数 def train(self, training_inputs, training_outputs, num_iterations): for iteration in range(num_iterations): # 前向传播 output = self.think(training_inputs) # 计算误差 error = training_outputs - output # 根据误差计算权重调整量 adjustments = np.dot(training_inputs.T, error * self.sigmoid_derivative(output)) # 更新权重 self.synaptic_weights += adjustments # 定义神经网络预测函数 def think(self, inputs): inputs = inputs.astype(float) output = self.sigmoid(np.dot(inputs, self.synaptic_weights)) return output # 创建神经网络对象 neural_network = NeuralNetwork() # 打印初始权重 print("初始权重:") print(neural_network.synaptic_weights) # 提供训练数据 training_inputs = np.array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]]) training_outputs = np.array([[0, 1, 1, 0]]).T # 训练神经网络 neural_network.train(training_inputs, training_outputs, 10000) # 打印训练后的权重 print("训练后的权重:") print(neural_network.synaptic_weights) # 提供新数据进行预测 new_inputs = np.array([1, 0, 0]) prediction = neural_network.think(new_inputs) # 打印预测结果 print("预测结果:") print(prediction) ``` 以上是一个简单的神经网络代码示例,用于实现简单的二进制逻辑门。你可以根据需求调整输入数据、训练次数和初始权重等参数,以适配不同的问题。希望对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值