自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Snu77的博客

本人所有改进专栏都包含完整代码和详细步骤教程,并附上多个添加位置推荐,助力您成功涨点,欢迎订阅专栏。

  • 博客(593)
  • 资源 (18)
  • 问答 (1)
  • 收藏
  • 关注

原创 YOLOv10有效涨点专栏目录 | 包含卷积、主干、检测头、注意力机制、Neck、二次创新、独家创新等上百种创新机制

Hello,各位读者们好本专栏自开设以来已经更新改进教程100余篇其中包含二次创新、独家创新多种改进方法,包含C2f、主干、检测头、注意力机制、Neck多种结构,也有损失函数和一些细节点上的创新。同时本人一些讲解视频和包含我所有创新的YOLOv10文档并不能在CSDN上传,通过建立交流群的形式在内上传我完整的文件和视频我也会在群内不定期和大家交流回答大家问题。专栏介绍。

2024-07-15 03:57:42 8226 10

原创 YOLOv9改进策略目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

Hello,各位读者们好本专栏自开设两个月以来已经更新改进教程50余篇其中包含RepNCSPELAN4、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新。同时本人一些讲解视频和包含我所有创新的YOLOv9文档并不能在CSDN上传(所有的创新点都经过我的测试是可用的,得到该文件之后大家可以随意组合使用),所以会建立群的形式在内上传我的文件和视频我也会在群内不定期和大家交流回答大家问题,同时定期会更新一些文章的创新点(经过我融合测试后的,先到先得)。

2024-05-13 23:17:00 9020 19

原创 RT-DETR改进有效系列目录 | 包含卷积、主干、RepC3、注意力机制、Neck上百种创新机制

Hello,各位读者们好Hello,各位读者,距离第一天发RT-DETR的博客已经过去了接近两个月,这段时间里我深入的研究了一下RT-DETR在ultralytics仓库的使用,旨在为大家解决为什么用v8的仓库训练的时候模型不收敛,精度差的离谱的问题,我也是成功的找到了解决方案,对于ultralytics仓库进行多处改进从而让其还原RT-DETR官方的实验环境从而达到一比一的效果。同时本人一些讲解视频和包含我所有创新的RT-DETR文档。

2024-01-29 03:18:18 11741 46

原创 YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

Hello,各位读者们好本专栏自开设两个月以来已经更新改进教程60余篇其中包含C2f、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新。同时本人一些讲解视频和包含我所有创新的YOLOv8文档并不能在CSDN上传(所有的创新点都经过我的测试是可用的,得到该文件之后大家可以随意组合使用),所以会建立群的形式在内上传我的文件和视频我也会在群内不定期和大家交流回答大家问题,同时定期会更新一些文章的创新点(经过我融合测试后的,先到先得)。本专栏持续更新网络上的所有前沿文章。

2024-01-07 03:41:27 19183 43

原创 YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

Hello,各位读者们好,本专栏自开设两个月以来已经更新改进教程120+余篇其中包含C2f、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新,订阅本专栏以后你不仅可以收获跟专栏的阅读权限,同时可以进Qq群,里面包含集成我所有创新的YOLO最新目录,和我本人录制的视频讲解教程,如果你想要在YOLOv8系列收获一篇论文,我相信订阅本专栏后你一定会有所收获~YOLOv8改进有效系列目录。

2023-12-30 22:44:58 95715 80

原创 时间序列预测专栏目录 | 深度学习、机器学习、融合模型、创新模型实战案例(附代码+数据集+原理介绍)

给大家推荐一下我的时间序列预测专栏,本专栏平均质量分98分,而且本专栏目前免费阅读,其中涉及机器学习、深度学习、融合模型、个人创新模型、数据分析等一系列有关时间序列的专栏,其中的实战的案例不仅有简单的模型类似于机器学习的ARIMA、Xgboost也有复杂的类似于深度学习的TPA-LSTM,还有个人创新的模型堆叠CNN-GRU-LSTM,同时本专栏的实战案例后期会持续的进行更新,复现各种最新的时间序列预测模型。时间序列预测的初学者、时间序列预测的工作者、数据分析的初学者。

2023-11-08 23:55:34 12092 11

原创 YOLOv11 | 一文带你深入理解ultralytics最新作品yolov11的创新 | 训练、推理、验证、导出 (附网络结构图)

ultralytics发布了最新的作品YOLOv11,这一次YOLOv11的变化相对于ultralytics公司的上一代作品YOLOv8变化还是很大的(YOLOv9、YOLOv10均不是ultralytics公司作品),其中改变的位置涉及到C2f变为C3K2,在SPPF后面加了一层类似于注意力机制的C2PSA,还有一个变化大家从yaml文件是看不出来的就是它的检测头内部替换了两个DWConv,在损失函数方面就没有变化了还是采用的CIoU作为边界框回归损失,下面带大家深入理解一下ultralytics最新作品

2024-10-01 03:38:58 877 4

原创 超详细教程YoloV11官方推荐免费数据集网站Roboflow一键导出Voc、COCO、Yolo、Csv等格式

YoloV11。YoloV11是一种高效的目标检测算法,它的训练需要高质量的数据集。然而,获取高质量的数据集是一项耗时且费力的任务。YoloV8官方推荐了一个数据集网站,就是Roboflow。Roboflow是一个数据集管理平台,提供了免费的数据集,同时也支持上传自己的数据集进行格式转换。使用Roboflow,开发者可以方便地获取所需格式的数据集,无需手动转换格式。此外,Roboflow还提供了多种数据预处理、数据增强等功能,可帮助开发者更好地优化训练数据,

2024-10-01 03:33:13 630

原创 训练YOLOv11 | Pytorch和Pycharm的安装教程适用W11系统(附详细的系统变量添加过程)

根据你之前下载的版本选择对应的选项即可,然后复制底下的绿色代码到Anaconda的命令行输入即可(这里要在你安装的python环境里进行安装,例如我的环境名字是PyTorch,那么就是activate PyTorch里进行安装)然后同之前一样会加载一会,然后会询问我们是否下载配件,我们输入Y等待即可(下载过程中我们要确保网络通常如果有波动可能会下载失败)。类似于我的电脑是Windows11选择上面红框内的选项即可点击后即下载,(注意这里下载的是zip文件)下载完成后复制下面几个文件。

2024-10-01 03:30:09 703

原创 YOLOv8改进 | Conv篇 | 利用ModulatedDeformConv优化YOLO下采样(降低参数 + 网络层数 + 计算量)

本文给大家带来的改进机制是ModulatedDeformConv来替换我们模型的下采样操作,其主要思想是通过引入可学习的空间偏移量,实现感受野的动态调整,增强卷积神经网络对图像中几何变换的适应能力。不同于其它的Conv这种可变形Conv主要就是通过学习下采样的位置来进行提高检测精度,但是这种方法可以减少计算量,网络层数,网络参数,所以这个方法还是比较推荐大家在自己数据集上尝试一下的。

2024-09-16 01:04:21 820

原创 YOLOv9改进 | Conv篇 | 最新轻量化自适应提取模块LAE助力边缘设备部署计算(附代码 + 修改教程 + 运行教程)

本文给大家带来的一个改进机制是最新由LSM-YOLO提出的轻量化自适应特征提取(Lightweight Adaptive Extraction, LAE)模块,其是LSM-YOLO模型中的关键模块旨在进行多尺度特征提取,同时降低计算成本。LAE通过以下方式实现更有效的特征提取:多尺度特征提取、自适应特征提取。LAE模块可以在不增加额外参数的情况下提高了模型对ROI区域的检测性能。​欢迎大家订阅我的专栏一起学习YOLO!YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏。

2024-09-14 23:26:09 355 1

原创 【RT-DETR有效改进】Conv篇 | 最新轻量化自适应提取模块LAE助力边缘设备部署计算(附代码 + 修改教程 + 运行教程)

本文给大家带来的一个改进机制是最新由LSM-YOLO提出的轻量化自适应特征提取(Lightweight Adaptive Extraction, LAE)模块,其是LSM-YOLO模型中的关键模块,旨在进行多尺度特征提取,同时降低计算成本。LAE通过以下方式实现更有效的特征提取:多尺度特征提取、自适应特征提取。LAE模块可以在不增加额外参数的情况下提高了模型对ROI区域的检测性能。​官方论文地址点击此处即可跳转官方代码地址点击此处即可跳转。

2024-09-14 23:10:28 507

原创 YOLOv10改进 | Conv篇 | 最新轻量化自适应提取模块LAE助力边缘设备部署计算(附代码 + 修改教程 + 运行教程)

本文给大家带来的一个改进机制是最新由LSM-YOLO提出的轻量化自适应特征提取(Lightweight Adaptive Extraction, LAE)模块,其是LSM-YOLO模型中的关键模块,旨在进行多尺度特征提取,同时降低计算成本。LAE通过以下方式实现更有效的特征提取:多尺度特征提取、自适应特征提取。LAE模块可以在不增加额外参数的情况下提高了模型对ROI区域的检测性能。​欢迎大家订阅我的专栏一起学习YOLO!目录一、本文介绍二、LAE结构介绍三、核心代码四、手把手教你添加本文机制4.1 修改一。

2024-09-14 22:43:24 482

原创 YOLOv5改进 | Conv篇 | 最新轻量化自适应提取模块LAE助力边缘设备部署计算(附代码 + 修改教程 + 运行教程)

本文给大家带来的一个改进机制是最新由LSM-YOLO提出的轻量化自适应特征提取(Lightweight Adaptive Extraction, LAE)模块,其是LSM-YOLO模型中的关键模块旨在进行多尺度特征提取,同时降低计算成本。LAE通过以下方式实现更有效的特征提取:多尺度特征提取、自适应特征提取。LAE模块可以在不增加额外参数的情况下提高了模型对ROI区域的检测性能。​欢迎大家订阅我的专栏一起学习YOLO!

2024-09-14 21:37:48 345 1

原创 YOLOv8改进 | Conv篇 | 最新轻量化自适应提取模块LAE助力边缘设备部署计算(附代码 + 修改教程 + 运行教程)

本文给大家带来的一个改进机制是最新由LSM-YOLO提出的轻量化自适应特征提取(Lightweight Adaptive Extraction, LAE)模块,其是LSM-YOLO模型中的关键模块,旨在进行多尺度特征提取,同时降低计算成本。LAE通过以下方式实现更有效的特征提取:多尺度特征提取、自适应特征提取。LAE模块可以在不增加额外参数的情况下提高了模型对ROI区域的检测性能。​

2024-09-14 21:16:14 1049 1

原创 YOLOv10改进 | 检测头篇 | 尺度统一动态检测头DynamicHead优化v10Detect(动态尺度检测头)

本文给大家带来的改进机制是,这个检测头由微软提出的一种名为“动态头”的新型检测头,用于统一尺度感知、空间感知和任务感知。网络上关于该检测头我查了一些有一些魔改的版本,但是我觉得其已经改变了该检测头的本质,因为往往一些细节上才能决定好的效果,我将官方的代码移植到了YOLOv10进行实验,同时该检测头有一些使用细节需要注意,成功实现了大幅度的涨点,mAP涨了百分之三十以上!!!所以检测头对于模型的精度提升是非常大的,同时该检测头有二次创新和三次创新的机会后期我也会发布在群里大家可以关注一下。

2024-07-17 22:58:40 1966 3

原创 YOLOv9可视化热力图 | 支持自定义模型、置信度选择等功能(论文必备)

本文给大家带来的机制是的可视化热力图功能,热力图作为我们论文当中的必备一环,可以展示出我们呈现机制的有效性,本文的内容支持YOLOv9最新版本,同时支持视频讲解,本文的内容是根据检测头的输出内容,然后来绘图,产生6300张预测图片,从中选取出有效的热力图来绘图。

2024-07-17 22:13:29 1085 2

原创 YOLOv10改进 | 细节涨点篇 | DySample一种轻量的动态上采样算子(效果完爆CARAFE)

本文给大家带来的改进机制是一种号称超轻量级且有效的动态上采样器——DySample。与传统的基于内核的动态上采样器相比,DySample采用了一种基于点采样的方法,相比于以前的基于内核的动态上采样器,DySample具有更少的参数、浮点运算次数、GPU内存和延迟。此外,DySample在包括语义分割、目标检测、实例分割、全景分割和单目深度估计在内的五个预测任务中,性能均优于其他上采样器(截至目前最有效的上采样算子),

2024-07-16 00:00:12 5491 1

原创 YOLOv10改进 | 细节涨点篇 | UNetv2提出的一种SDI多层次特征融合模块(分割高效涨点)

本问给大家带来的改进机制是UNetv2提出的一种多层次特征融合模块(SDI)其是一种用于替换Concat操作的模块,SDI模块的主要思想是通过整合编码器生成的层级特征图来增强图像中的语义信息和细节信息。该方法已在多个公开的医学图像分割数据集上进行了验证,包括皮肤病变分割和息肉分割,展示了其在这些分割任务中相比于现有方法的效果。所以其的一开始提出使用于分割,但是其也可以用于目标检测,亲测效果非常好,同时该结构主要是可以用于替换我们各种Neck中的结构形成二次创新比如之前的BiFPN,

2024-07-16 00:00:02 4585

原创 YOLOv10改进 | 细节涨点篇 | CARAFE提高精度的上采样方法(助力细节长点)

本文给大家带来的CARAFE(Content-Aware ReAssembly of FEatures)是一种用于增强卷积神经网络特征图的上采样方法。其主要旨在改进传统的上采样方法就是我们的Upsample的性能。使用输入特征本身的内容来指导上采样过程,从而实现更精准和高效的特征重建。CARAFE是一种即插即用的上采样机制其本身并没有任何的使用限制,特别是在需要精细上采样的场景中,如图像超分辨率、语义分割等。这种方法改善了上采样过程中的细节保留和重建质量,使网络能够生成更清晰、更准确的输出。

2024-07-15 23:59:53 4872

原创 YOLOv10改进 | 细节创新篇 | iAFF迭代注意力特征融合助力多目标细节涨点(二次创新C2f和C2fCIB机制)

本文给大家带来的改进机制是iAFF(迭代注意力特征融合),其主要思想是通过改善特征融合过程来提高检测精度。传统的特征融合方法如加法或串联简单,未考虑到特定对象的融合适用性。iAFF通过引入多尺度通道注意力模块(我个人觉得这个改进机制就算融合了注意力机制的求和操作)更好地整合不同尺度和语义不一致的特征。该方法属于细节上的改进,并不影响任何其它的模块,非常适合大家进行融合改进,单独使用也是有一定的涨点效果,本文内容包含二次创新C2f和C2fCIB机制均为独家创新。

2024-07-15 23:59:44 2957 1

原创 YOLOv10改进 | 检测头篇 | 给YOLOv10换个RT-DETR的检测头(重塑目标检测前沿技术)

本文给大家带来是用RT-DETR模型的检测头去替换YOLOv10中的检测头。RT-DETR号称是打败YOLO的检测模型,其作为一种基于Transformer的检测方法,相较于传统的基于卷积的检测方法,提供了更为全面和深入的特征理解,将RT-DETR检测头融入YOLOv10,我们可以结合YOLO的实时检测能力和RT-DETR的深度特征理解能力,打造出一个更加强大的目标检测模型。亲测这一整合不仅提高了模型在复杂场景下的表现,还显著提升了对小目标和遮挡目标的检测能力。此外,模型在多种标准数据集。

2024-07-15 06:53:58 651

原创 YOLOv10改进 | 检测头篇 | ASFF改进YOLOv10检测头(辅助尺度融合检测头)

本文给大家带来的改进机制是利用ASFF改进YOLOv10的检测头形成新的检测头,其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。经过我的实验验证,修改后的检测头在所有的检测目标上均有大幅度的涨点效果,此版本为三头版本,后期我会在该检测头的基础上进行二次创新形成四头版本的Detect_ASFF助力小目标检测,本文的检测头非常推荐大家使用。YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍二、ASFF的基本框架原理。

2024-07-15 06:46:22 618 1

原创 YOLOv10改进 | 代码逐行解析(四) | 手把手带你理解YOLOv10的一对一和一对多检测头(新手入门必读系列)

本文给大家带来的是YOLOv10中从检测头结构分析到损失函数各种计算的详解,本文将从检测头的网络结构讲起,同时分析其中的原理(包括代码和网络结构图对比),最重要的是分析检测头的输出,因为检测头的输出是需要输出给损失函数的计算不同阶段的输出不一样所以我们在讲损失函数计算的时候需要先明白检测头的输出和其中的一些参数的定义,本文内容为我独家整理和分析,手打每一行的代码分析并包含各种举例分析对于小白来说绝对有所收获,全文共1万1千字。YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备。

2024-07-15 06:03:47 1044

原创 YOLOv10改进 | 添加注意力篇 | 结合Mamba注意力机制MLLA助力YOLOv10有效涨点含二次创新PSA(全网独家首发)

本文给大家带来的改进机制是结合号称超越Transformer架构的Mamba架构的最新注意力机制MLLA,本文将其和我们YOLOv10进行结合,的原理是通过将Mamba模型的一些核心设计融入线性注意力机制,从而提升模型的性能。具体来说,MLLA主要整合了Mamba中的“忘记门”(forget gate)和模块设计(block design)这两个关键因素,同时MLLA通过使用位置编码(RoPE)来替代忘记门,从而在保持并行计算和快速推理速度的同时,提供必要的位置信息。

2024-07-15 06:02:54 896 1

原创 YOLOv10改进 | 添加注意力篇 | 实现级联群体注意力机制CGAttention (添加注意力机制,全新改进策略)

本文给大家带来的改进机制是实现级联群体注意力机制,其主要思想为增强输入到注意力头的特征的多样性。与以前的自注意力不同,它为每个头提供不同的输入分割,并跨头级联输出特征。这种方法不仅减少了多头注意力中的计算冗余,而且通过增加网络深度来提升模型容量,亲测在我的25个类别的数据上,大部分的类别均有一定的涨点效果,仅有部分的类别保持不变,同时给该注意力机制含有二次创新的机会欢迎大家订阅我的专栏一起学习YOLO!YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍。

2024-07-15 05:53:08 510

原创 YOLOv10改进 | 添加注意力篇 | 添加MLCA混合局部通道注意力(轻量化注意力机制)

本文带来的改进机制是翻译来就是混合局部通道注意力,它结合了局部和全局特征以及通道和空间特征的信息,根据文章的内容来看他是一个轻量化的注意力机制,能够在增加少量参数量的情况下从而大幅度的提高检测精度(论文中是如此描述的),根据我的实验内容来看,该注意力机制确实参数量非常少,效果也算不错,而且官方的代码中提供了二次创新的思想和视频讲解非常推荐大家观看。YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍二、MLCA的基本框架原理三、MLCA的核心代码四、手把手教你添加MLCA。

2024-07-15 05:49:12 823

原创 YOLOv10可视化热力图 | 支持自定义模型、置信度选择等功能(论文必备)

本文给大家带来的机制是的可视化热力图功能,热力图作为我们论文当中的必备一环,可以展示出我们呈现机制的有效性,本文的内容支持YOLOv10最新版本,同时支持视频讲解,本文的内容是根据检测头的输出内容,然后来绘图,产生6300张预测图片,从中选取出有效的热力图来绘图。

2024-07-14 23:53:39 1446 7

原创 YOLOv10改进 | 可视化热力图 | 支持YOLOv10最新版本密度热力图,和视频热力图

本文给大家带来的机制是集成了YOLOv10最新版本的可视化热力图功能,热力图作为我们论文当中的必备一环,可以展示出我们呈现机制的有效性,本文的内容支持YOLOv10最新版本的根据密度呈现的热力图,同时支持视频检测,根据视频中的密度来绘画热力图。

2024-07-14 23:53:26 982 3

原创 YOLOv10改进 | 主干/Backbone篇 | 2024.5全新的移动端网络MobileNetV4改进YOLOv10(含MobileNetV4全部版本改进)

本文给大家带来的改进机制是,其发布时间是2024.5月。MobileNetV4是一种高度优化的神经网络架构,专为移动设备设计。它最新的改动总结主要有两点采用了通用反向瓶颈(UIB)和针对移动加速器优化的Mobile MQA注意力模块(一种全新的注意力机制)。这些创新有助于在不牺牲准确性的情况下,显著提高推理速度和计算效率。MobileNetV4作为一种移动端的网络,其实它的论文中主要是配合蒸馏技术进行改进,大家可以搭配本专栏的蒸馏进行二次创新涨点。欢迎大家订阅我的专栏一起学习YOLO!

2024-07-14 23:52:57 750 1

原创 YOLOv10改进 | 主干/Backbone篇 | 轻量化网络MobileViTv2改进YOLOv10助力轻量化模型

本文给大家带来的改进机制是MobileViT系列的V2版本,其作为MobileNet网络的挑战者,其效果自然不用多说,MobileViT模型是为移动设备设计的轻量级、通用目的视觉变换器。它融合了卷积神经网络(CNN)和视觉变换器(ViT)的优势,旨在在保持高效性能的同时减少模型参数和降低延迟。通过其创新的MobileViT Block和多尺度训练方法,MobileViT在多个视觉任务上取得了优异的结果,欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

2024-07-14 23:51:28 740

原创 YOLOv10改进 | 主干/Backbone篇 | 轻量化网络MobileViTv1改进YOLOv10助力轻量化模型

本文给大家带来的改进机制是MobileViT系列的V1版本,其作为MobileNet网络的挑战者,其效果自然不用多说,MobileViT模型是为移动设备设计的轻量级、通用目的视觉变换器。它融合了卷积神经网络(CNN)和视觉变换器(ViT)的优势,旨在在保持高效性能的同时减少模型参数和降低延迟。通过其创新的MobileViT Block和多尺度训练方法,MobileViT在多个视觉任务上取得了优异的结果,欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

2024-07-14 23:48:17 854

原创 YOLOv10改进 | 主干/Backbone篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)

本文给大家带来的改进机制是反向残差块网络EMO,其的构成块iRMB在之前我已经发过了,同时进行了二次创新,本文的网络就是由iRMB组成的网络EMO,所以我们二次创新之后的iEMA也可以用于这个网络中,再次形成二次创新,同时本文的主干网络为一种轻量级的CNN架构,在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进,更有包含我所有的YOLOv10仓库集成文件(文件内集成我所有的改进机制全部注册完毕可以直接运行)和交流群和视频讲解提供给大家。

2024-07-14 23:42:14 853

原创 YOLOv10改进 | 主干/Backbone篇 | EfficientViT高效的特征提取网络完爆MobileNet系列(轻量化网络结构)

本文给大家带来的改进机制是主干网络,一个名字的特征提取网络(和之前发布的只是同名但不是同一个)其基本原理是提升视觉变换器在高效处理高分辨率视觉任务的能力。它采用了创新的建筑模块设计包括三明治布局和级联群组注意力模块。其是一种高效率的特征提取网络训练速度非常快,推理速度也要比基础版本的要快,其效果完爆之前的MobileNetV3等轻量化网络模型。欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。欢迎大家订阅我的专栏一起学习YOLO!

2024-07-14 23:40:03 601

原创 YOLOv10改进 | 主干/Backbone篇 | UniRepLknet特征提取网络(附对比试验效果图)

本文给大家带来的改进机制是特征提取网络,该网络结构的重点在于使用Dilated Reparam Block和大核心指导原则,强调了高效的结构进行通道间通讯和空间聚合,以及使用带扩张的小核心进行重新参数化,该网络结构就是在LKNet基础上的一个升级版本,LKNet我们之前已经出过教程了。在各种视觉任务中,包括图像分类、目标检测和语义分割,都显示出优异的性能。欢迎大家订阅我的专栏一起学习YOLO!YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍。

2024-07-14 23:37:24 1122 2

原创 YOLOv10改进 | 主干/Backbone篇 | 华为移动端模型Ghostnetv2改进特征提取网络

本文给大家带来的改进机制是华为移动端模型Ghostnetv2,华为GhostNetV2是为移动应用设计的轻量级卷积神经网络(CNN),旨在提供更快的推理速度,其引入了一种硬件友好的注意力机制,称为DFC注意力。这个注意力机制是基于全连接层构建的,它的设计目的是在通用硬件上快速执行,并且能够捕捉像素之间的长距离依赖关系,本文将通过首先介绍其主要原理,然后手把手教大家如何使用该网络结构改进我们的特征提取网络。欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

2024-07-14 23:32:45 686

原创 YOLOv10改进 | 主干/Backbone篇 | 华为移动端模型Ghostnetv1改进特征提取网络

本文给大家带来的改进机制是华为移动端模型Ghostnetv1,华为的GhostNet是一种轻量级卷积神经网络,旨在在计算资源有限的嵌入式设备上实现高性能的图像分类。GhostNet的关键思想在于通过引入Ghost模块,以较低的计算成本增加了特征图的数量,从而提高了模型的性能。这种方法在计算资源有限的情况下,尤其适用于图像分类任务,并在一些基准测试中表现出了很好的性能。本文将通过首先介绍其主要原理,然后手把手教大家如何使用该网络结构改进我们的特征提取网络。

2024-07-14 23:31:15 763

原创 YOLOv10改进 | 主干/Backboen篇 | 12月份最新成果TransNeXt特征提取网络(全网首发)

本文给大家带来的改进机制是TransNeXt特征提取网络将其应用在我们的特征提取网络来提取特征,同时本文给大家解决其自带的一个报错,通过结合聚合的像素聚焦注意力和卷积GLU,模拟生物视觉系统,特别是对于中心凹的视觉感知。这种方法使得每个像素都能实现全局感知,并强化了模型的信息混合和自然视觉感知能力。TransNeXt在各种视觉任务中,包括图像分类、目标检测和语义分割,都显示出优异的性能(该模型的训练时间很长这是需要大家注意的)。欢迎大家订阅我的专栏一起学习YOLO!

2024-07-14 23:26:10 665

原创 YOLOv10改进 | SPPF篇 | FocalModulation替换SPPF(精度更高的空间金字塔池化)

本文给大家带来的改进是用FocalModulation技术来替换了原有的SPPF(快速空间金字塔池化)模块。FocalModulation是今年新提出的特征增强方法,它利用注意力机制来聚焦于图像中的关键区域,从而提高模型对这些区域的识别能力。与SPPF相比,FocalModulation不仅能够处理不同尺寸的输入图像,还能更精确地识别和定位图像中的对象。这一技术特别适用于处理那些难以检测的小对象或在复杂背景中的对象(更多的检测效果请看第二章)。我进行了简单的实验,这个FocalModulation能够提升一

2024-07-14 23:21:02 884

原创 YOLOv10改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

本篇文章的内容是在大家得到一个改进版本的C2f一个新的注意力机制、或者一个新的卷积模块、或者是检测头的时候如何替换我们YOLOv10模型中的原有的模块,从而用你的模块去进行训练模型或者检测。因为最近开了一个专栏里面涉及到挺多改进的地方,不能每篇文章都去讲解一遍如何修改,就想着在这里单独出一期文章进行一个总结性教程,大家可以从我的其它文章中拿到修改后的代码,从这篇文章学会如何去添加到你的模型结构中去。本文目前的改进教程包括:注意力机制、C2f(改进后的)、卷积(主干上的)、Neck、检测头、损失函数。

2024-07-14 23:10:14 804

全新的SOTA模型YOLOv9

当今的深度学习方法专注于如何设计最合适的目标函数,以使模型的预测结果尽可能接近真实值。同时,还需要设计一个合适的架构,以便获取足够的信息进行预测。现有方法忽略了一个事实:当输入数据经过逐层的特征提取和空间变换时,会丢失大量信息。本文将深入探讨数据在深度网络中传输时数据丢失的重要问题,即信息瓶颈和可逆函数问题。我们提出了可编程梯度信息(PGI)的概念,以应对深度网络实现多个目标所需的各种变化。PGI能够为目标任务提供完整的输入信息,以计算目标函数,从而获得可靠的梯度信息以更新网络权重。此外,我们还设计了一种基于梯度路径规划的新型轻量级网络架构——广义高效层聚合网络(GELAN)。GELAN的架构证明了PGI在轻量级模型上获得了优越的结果。我们在基于MS COCO数据集的目标检测上验证了所提出的GELAN和PGI。结果显示,GELAN仅使用传统的卷积运算符就实现了比基于深度卷积的最新方法更好的参数利用率。PGI可用于从轻量级到大型的各种模型,它可以获取完整信息,使得从零开始训练的模型比使用大型数据集预训练的最新模型获得更好的结果,比较结果如图1所示。

2024-02-22

全新的SOTA模型YOLOv9原文 + 论文阅读笔记

当今的深度学习方法专注于如何设计最合适的目标函数,以使模型的预测结果尽可能接近真实值。同时,还需要设计一个合适的架构,以便获取足够的信息进行预测。现有方法忽略了一个事实:当输入数据经过逐层的特征提取和空间变换时,会丢失大量信息。本文将深入探讨数据在深度网络中传输时数据丢失的重要问题,即信息瓶颈和可逆函数问题。我们提出了可编程梯度信息(PGI)的概念,以应对深度网络实现多个目标所需的各种变化。PGI能够为目标任务提供完整的输入信息,以计算目标函数,从而获得可靠的梯度信息以更新网络权重。此外,我们还设计了一种基于梯度路径规划的新型轻量级网络架构——广义高效层聚合网络(GELAN)。GELAN的架构证明了PGI在轻量级模型上获得了优越的结果。我们在基于MS COCO数据集的目标检测上验证了所提出的GELAN和PGI。结果显示,GELAN仅使用传统的卷积运算符就实现了比基于深度卷积的最新方法更好的参数利用率。PGI可用于从轻量级到大型的各种模型,它可以获取完整信息,使得从零开始训练的模型比使用大型数据集预训练的最新模型获得更好的结果,比较结果如图1所示。

2024-02-22

时间序列预测实战(十九)魔改Informer模型进行滚动长期预测(科研版本,结果可视化)

在之前的文章中我们已经讲过Informer模型了,但是呢官方的预测功能开发的很简陋只能设定固定长度去预测未来固定范围的值,当我们想要发表论文的时候往往这个预测功能是并不能满足的,所以我在官方代码的基础上增添了一个滚动长期预测的功能,这个功能就是指我们可以第一次预测未来24个时间段的值然后我们像模型中填补 24个值再次去预测未来24个时间段的值(填补功能我设置成自动的了无需大家手动填补),这个功能可以说是很实用的,这样我们可以准确的评估固定时间段的值,当我们实际使用时可以设置自动爬取数据从而产生实际效用。本文修改内容完全为本人个人开发,创作不易所以如果能够帮助到大家希望大家给我的文章点点赞,同时可以关注本专栏(免费阅读),本专栏持续复现各种的顶会内容,无论你想发顶会还是其它水平的论文都能够对你有所帮助。 时间序列预测在许多领域都是关键要素,在这些场景中,我们可以利用大量的时间序列历史数据来进行长期预测,即长序列时间序列预测(LSTF)。然而,现有方法大多设计用于短期问题,如预测48点或更少的数据。随着序列长度的增加,模型的预测能力受到挑战。例如,当预测长度超过48点时,LSTM网络的预测

2023-12-20

roboflow实验数据集-YOLOv8格式

工地数据集,总共二十余类别包含正常物体检测,小目标检测。

2023-12-14

【Google2023】利用TiDE进行长期预测实战(时间序列密集编码器)

大家好,最近在搞论文所以在研究各种论文的思想,这篇文章给大家带来的是TiDE模型由Goggle在2023.8年发布,其主要的核心思想是:基于多层感知机(MLP)构建的编码器-解码器架构,核心创新在于它结合了线性模型的简洁性和速度优势,同时能有效处理协变量和非线性依赖。论文中号称TiDE在长期时间序列预测基准测试中不仅表现匹敌甚至超越了先前的方法,而且在速度上比最好的基于Transformer的模型快5到10倍。在官方的开源代码中是并没有预测未来数据功能的,因为这种都是学术文章发表论文的时候只看测试集表现。我在自己的框架下给其补上了这一功能同时加上了绘图的功能,非常适合大家发表论文的适合拿来做对比模型。TiDE(时间序列密集编码器)模型是一个基于多层感知机(MLP)的编码器-解码器架构,旨在简化长期时间序列预测。该模型结合了线性模型的简单性和速度,同时能够有效处理协变量和非线性依赖。

2023-12-04

Transformer模型实现长期预测并可视化结果(附代码+数据集+原理介绍)

这篇文章给大家带来是Transformer在时间序列预测上的应用,这种模型最初是为了处理自然语言处理(NLP)任务而设计的,但由于其独特的架构和能力,它也被用于时间序列分析。Transformer应用于时间序列分析中的基本思想是:Transformer 在时间序列分析中的应用核心在于其自注意力机制,这使其能够有效捕捉时间序列数据中的长期依赖关系。通过并行处理能力和位置编码,Transformer 不仅提高了处理效率,而且确保了时间顺序的准确性。其灵活的模型结构允许调整以适应不同复杂度这篇文章给大家带来是Transformer在时间序列预测上的应用,这种模型最初是为了处理自然语言处理(NLP)任务而设计的,但由于其独特的架构和能力,它也被用于时间序列分析。Transformer应用于时间序列分析中的基本思想是:Transformer 在时间序列分析中的应用核心在于其自注意力机制,这使其能够有效捕捉时间序列数据中的长期依赖关系。通过并行处理能力和位置编码,Transformer 不仅提高了处理效率,而且确保了时间顺序的准确性。定制化训练个人数据集进行训练利用python和pytorch实现

2023-11-12

FNet模型实现滚动长期预测并可视化结果,定制化数据集进行预测

本博客将介绍一种新的时间序列预测模型——FNet它通过使用傅里叶变换代替自注意力机制,旨在解决传统Transformer模型中的效率问题。FNet模型通过简单的线性变换,包括非参数化的傅里叶变换,来“混合”输入令牌,从而实现了快速且高效的处理方式。这种创新的方法在保持了相对较高的准确性的同时,显著提高了训练速度,特别是在处理长序列数据时更显优势。FNet的工作原理,并通过一个实战案例展示如何实现基于FNet的可视化结果和滚动长期预测。预测类型->多元预测、单元预测、长期预测。适用对象->受硬件所限制的时候,FNet是一种基于Transformer编码器架构的模型,通过替换自注意力子层为简单的线性变换,特别是傅里叶变换,来加速处理过程。FNet架构中的每一层由一个傅里叶混合子层和一个前馈子层组成(下图中的白色框)。傅里叶子层应用2D离散傅里叶变换(DFT)到其输入,一维DFT沿序列维度和隐藏维度。总结:FNet相对于传统的Transformer的改进其实就一点就是将注意力机制替换为傅里叶变换,所以其精度并没有提升(我觉得反而有下降,但是论文内相等,但是从我的实验角度结果分析精度是有下降的

2023-11-11

DLinear模型实现滚动长期预测并可视化预测结果

本文给大家带来是DLinear模型,DLinear是一种用于时间序列预测(TSF)的简单架构,DLinear的核心思想是将时间序列分解为趋势和剩余序列,并分别使用两个单层线性网络对这两个序列进行建模以进行预测(值得一提的是DLinear的出现是为了挑战Transformer在实现序列预测中有效性)。本文的讲解内容包括:模型原理、数据集介绍、参数讲解、模型训练和预测、结果可视化、训练个人数据集,讲解顺序如下->预测类型->这个模型我在写的过程中为了节省大家训练自己数据集,我基本上把大部分的参数都写好了。我看论文的内容大比分都是对比实验,因为DLinear的产生就是为了质疑Transformer所以他和各种Transformer的模型进行对比试验,因为本篇文章就是DLinear的实战案例,对比的部分我就不讲了,大家有兴趣可以看看论文内容在最上面我已经提供了链接。 到此本文已经全部讲解完成了,希望能够帮助到大家,在这里也给大家推荐一些我其它的博客的时间序列实战案例讲解,其中有数据分析的讲解就是我前面提到的如何设置参数的分析博客,最后希望大家订阅我的专栏,本专栏均分文章均分98,并且免费阅读。

2023-11-11

SCINet时间序列预测实战(附代码+数据集+原理介绍)

这篇文章给大家带来的是关于SCINet实现时间序列滚动预测功能的讲解,SCINet是样本卷积交换网络的缩写(Sample Convolutional Interchange Network),SCINet号称是比现有的卷积模型和基于Transformer的模型准确率都有提升(我实验了几次效果确实不错)。本篇文章讲解的代码是我个人根据官方的代码总结出来的模型结构并且进行改进增加了滚动预测的功能。模型我用了两个数据集进行测试,一个是某个公司的话务员接线量一个是油温效果都不错,我下面讲解用油温的数据进行案例的讲解SCINet是一个层次化的降采样-卷积-交互TSF框架,有效地对具有复杂时间动态的时间序列进行建模。通过在多个时间分辨率上迭代提取和交换信息,可以学习到具有增强可预测性的有效表示。此外,SCINet的基础构件,SCI-Block,通过将输入数据/特征降采样为两个子序列,然后使用不同的卷积滤波器提取每个子序列的特征。为了补偿降采样过程中的信息损失,每个SCI-Block内部都加入了两种卷积特征之间的交互学习。个人总结:SCINet就是在不同的维度上面对数据进行处理进行特征提取工作,从而

2023-11-11

Informer模型实战案例(代码+数据集+参数讲解)

本篇博客带大家看的是Informer模型进行时间序列预测的实战案例,它是在2019年被提出并在ICLR 2020上被评为Best Paper,可以说Informer模型在当今的时间序列预测方面还是十分可靠的,Informer模型的实质是注意力机制+Transformer模型,Informer模型的核心思想是将输入序列进行自注意力机制的处理,以捕捉序列中的长期依赖关系,并利用Transformer的编码器-解码器结构进行预测,通过阅读本文你可以学会利用个人数据集训练模型。Informer是一种用于长序列时间序列预测的Transformer模型,但是它与传统的Transformer模型又有些不同点,与传统的Transformer模型相比,Informer具有以下几个独特的特点: 1. ProbSparse自注意力机制:Informer引入了ProbSparse自注意力机制,该机制在时间复杂度和内存使用方面达到了O(Llog L)的水平,能够有效地捕捉序列之间的长期依赖关系。 2. 自注意力蒸馏:通过减少级联层的输入,自注意力蒸馏技术可以有效处理极长的输入序列,提高了模型处理长序列的能力

2023-11-10

TPA-LSTM时间序列预测实战案例

本文通过实战案例讲解TPA-LSTM实现多元时间序列预测,在本文中所提到的TPA和LSTM分别是注意力机制和深度学习模型,通过将其结合到一起实现时间序列的预测,本文利用有关油温的数据集来进行训练模型,同时将模型保存到本地,进行加载实现多步长预测,本文所利用的数据集也可以替换成你个人的数据集来进行预测(修改个人的数据集的地方本文也进行了标注),同时本文会对TPA和LSTM分别进行概念的讲解帮助大家理解其中的运行机制原理(包括个人总结已经论文内容)。TPA(Temporal Pattern Attention)注意力机制是一种用于处理时间序列数据的注意力机制。它的工作原理是在传统的注意力机制的基础上引入了时间模式的概念,以更好地捕捉时间序列中的重要模式和特征。LSTM(长短期记忆,Long Short-Term Memory)是一种用于处理序列数据的深度学习模型,属于循环神经网络(RNN)的一种变体,其使用一种类似于搭桥术结构的RNN单元。相对于普通的RNN,LSTM引入了门控机制,能够更有效地处理长期依赖和短期记忆问题,是RNN网络中最常使用的Cell之一。配合我的博客大家可以实现预测。

2023-11-05

修改了DSCN动态蛇形卷积的ultralytics文件

动态蛇形卷积的灵感来源于对管状结构的特殊性的观察和理解,在分割拓扑管状结构、血管和道路等类型的管状结构时,任务的复杂性增加,因为这些结构的局部结构可能非常细长和迂回,而整体形态也可能多变。 因此为了应对这个挑战,作者研究团队注意到了管状结构的特殊性,并提出了动态蛇形卷积(Dynamic Snake Convolution)这个方法。动态蛇形卷积通过自适应地聚焦于细长和迂回的局部结构,准确地捕捉管状结构的特征。这种卷积方法的核心思想是,通过动态形状的卷积核来增强感知能力,针对管状结构的特征提取进行优化。 总之动态蛇形卷积是一种针对管状结构分割任务的创新方法,在许多模型上添加针对一些数据集都能够有效的涨点,其具有重要性和广泛的应用领域。 动态蛇形卷积(Dynamic Snake Convolution)适用于多种模型,可以在多种模型上添加或替换该卷积,本文主要针对的改进模型是YOLOv8模型,并修复动态蛇形卷积官方代码中存在的BUG例如: Expected all tensors to be on the same device, but found at least two devi

2023-11-03

BiFormer: Vision Transformer with Bi-Level Routing Attention论文

研究人员提出了一种名为BiFormer的新型视觉Transformer模型,它以动态稀疏注意力和双层路由为核心。传统的注意力机制在捕捉长距离依赖性方面表现出色,但也带来了巨大的计算和内存开销,因为需要在所有空间位置上计算令牌之间的配对交互。为了解决这个问题,之前的一些方法引入了手工设计的、与内容无关的稀疏性,如将注意力操作限制在局部窗口、轴向条纹或膨胀窗口内。与这些方法不同,该研究提出了一种全新的通过双层路由实现的动态稀疏注意力机制,以实现更灵活的计算分配并具备内容感知性。 具体而言,对于一个查询(query),首先在粗糙的区域级别上过滤掉无关的键值对,然后对剩余的候选区域(即路由区域的并集)应用细粒度的令牌对令牌的注意力计算。该研究提供了一种简单而有效的实现方式,利用稀疏性来节省计算和内存,并且仅涉及适用于GPU的稠密矩阵乘法。基于提出的双层路由注意力机制,研究人员提出了一种名为BiFormer的新型通用视觉Transformer模型。由于BiFormer能够以查询自适应的方式关注一小部分相关令牌,而不受其他无关令牌的干扰,因此在性能和计算效率方面都表现出良好的特性,尤其在密集预测

2023-11-02

动态蛇形卷积(Dynamic Snake Convolution)

准确分割拓扑管状结构、血管和道路等拓扑管状结构在各个领域都至关重要,确保下游任务的准确性和效率。然而,许多因素导致任务复杂化,包括局部结构薄和全局形态多变。在这项工作中,我们注意到管状结构的特殊性并利用这一知识指导我们的 DSCNet,在特征提取、特征融合和损失约束三个阶段同时增强感知。首先,我们提出了首先,我们提出了一种动态蛇形卷积法,通过自适应地聚焦于细长和迂回的局部结构来准确捕捉管状结构的特征。随后,我们提出了一种多视角特征融合策略,以补充在特征融合过程中关注来自多个视角的特征,确保保留来自不同全局形态的重要信息。不同全局形态的重要信息。最后,我们提出了一种连续性基于持久同源性的连续性约束损失函数最后,提出了一种基于持久同源性的连续性约束损失函数,以更好地约束分割的拓扑连续性。 

2023-10-31

时间序列预测模型实战案例深度学习华为MTS-Mixers模型

首先我们要对时间序列概念有一个基本的了解时间序列预测大致分为两种一种是单元时间序列预测另一种是多元时间序列预测单元时间序列预测是指只考虑一个时间序列的预测模型。它通常用于预测单一变量的未来值,例如股票价格、销售量等。在单元时间序列预测中,我们需要对历史数据进行分析,确定趋势、季节性和周期性等因素,并使用这些因素来预测未来的值。常见的单元时间序列预测模型有移动平均模型(MA)自回归模型(AR)自回归移动平均模型(ARMA)差分自回归移动平均模型(ARIMA)后期我也会讲一些最新的预测模型包括Informer,TPA-LSTM,ARIMA,XGBOOST,Holt-winter,移动平均法等等一系列关于时间序列预测的模型,包括深度学习和机器学习方向的模型我都会讲,你可以根据需求选取适合你自己的模型进行预测,如果有需要可以+个关注。

2023-10-27

机器学习ARIMA时间序列预测模型实战案例

ARIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。本章将介绍一个实战案例,利用Python编程语言实现了ARIMA模型并进行预测。通过这个案例,我们将深入了解ARIMA模型的构建过程和关键步骤,并学习如何使用Python中的相关库来进行模型训练和预测。在案例中,我们将使用一组客服的接线量数据作为实验对象。通过分析这些数据,我们将探索数据的特征和规律,进行平稳性检验和差分操作,然后通过自相关和偏自相关图来选择合适的ARIMA模型参数。RIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。在本篇博客中,我们将深入探讨ARIMA模型的实战应用,并通过Python进行模型的实现和分析。 我们的实战案例基于一组客服接线量的数据。首先,我们对数据进行了详细的探索性分析,以揭示其内在的时间序列特性。对于非平稳的数据,我们使用差分操作使其平稳,以便进行后续的建模和预测。 在模型参数的选择上,我们使用了自相关图(ACF)和偏自相关图(PACF)来帮助确定ARIMA

2023-10-27

时间序列预测模型实战案例基于双向LSTM横向搭配合单向LSTM进行回归问题的解决

内容概要:通过数据集电力变压器油温数据详细的介绍双向LSTM,以及其机制,运行原理,以及如何横向搭配单向的LSTM进行回归问题的解决。 所需数据:在本次的模型所需的数据是电力变压器油温数据,由国家电网提供,该数据集是来自中国同一个省的两个不同县的变压器数据,时间跨度为2年,原始数据每分钟记录一次(用 m 标记),每个数据集包含2年 * 365天 * 24小时 * 60分钟 = 1,051,200数据点。 每个数据点均包含8维特征,包括数据点记录日期,预测目标值OT(oil temperature)和6个不同类型功率负载特征。 适合人群:时间序列和深度学习初学者本文的模型比较简单,易于理解。 阅读建议:可以大致阅读以下,本文件只是一个简单实现版本,并不复杂。 能学到什么:能够从本文件当中读懂深度学习的代码实现过程,对于时间序列有一个简单的了解, (PS:如果你使用你自己的数据进行预测需要将时间列和官方数据集保持一致,因为在数据处理部分我添加了一部分特征工程操作,提取了一些时间信息,因为LSTM不支持时间格式的数据输入,需要转化为数字) 如果大家不懂的地方可以看我的文章部分有详细的讲解。

2023-09-27

时间序列预测模型实战案例(Xgboost)(Python)(机器学习)包括时间序列预测和时间序列分类,点击即可运行!

内容概要 资源包括三部分(时间序列预测部分和时间序列分类部分和所需的测试数据集全部包含在内) 在本次实战案例中,我们将使用Xgboost算法进行时间序列预测。Xgboost是一种强大的梯度提升树算法,适用于各种机器学习任务,它最初主要用于解决分类问题,在此基础上也可以应用于时间序列预测。 时间序列预测是通过分析过去的数据模式来预测未来的数值趋势。它在许多领域中都有广泛的应用,包括金融、天气预报、股票市场等。我们将使用Python编程语言来实现这个案例。 其中包括模型训练部分和保存部分,可以将模型保存到本地,一旦我们完成了模型的训练,我们可以使用它来进行预测。我们将选择合适的输入特征,并根据模型的预测结果来生成未来的数值序列。最后,我们会将预测结果与实际观测值进行对比,评估模型的准确性和性能。 适合人群:时间序列预测的学习者,机器学习的学习者, 能学到什么:本模型能够让你对机器学习和时间序列预测有一个清楚的了解,其中还包括数据分析部分和特征工程的代码操作 阅读建议:大家可以仔细阅读代码部分,其中包括每一步的注释帮助读者进行理解,其中涉及到的知识有数据分析部分和特征工程的代码操作。

2023-09-25

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除