自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Snu77的博客

本人所有改进专栏都包含完整代码和详细步骤教程,并附上多个添加位置推荐,助力您成功涨点,欢迎订阅专栏。

  • 博客(764)
  • 资源 (18)
  • 问答 (1)
  • 收藏
  • 关注

原创 YOLOv11改进有效涨点专栏目录 | 含卷积、主干、注意力机制、Neck、检测头、损失函数、二次创新C2PSA/C3k2等各种网络结构改进

Hello,各位读者们好.本文为最新YOLOv11有效涨点专栏目录,YOLOv11以及发布了一个月左右,这个过程中我也是给大家整理了许多的机制,其中包含了C3k2、主干(均支持根据yolov11训练的版本进行二次缩放,全系列都能轻量化)、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新。

2024-11-05 02:06:23 20578 28

原创 YOLOv10有效涨点专栏目录 | 包含卷积、主干、检测头、注意力机制、Neck、二次创新、独家创新等上百种创新机制

Hello,各位读者们好本专栏自开设以来已经更新改进教程100余篇其中包含二次创新、独家创新多种改进方法,包含C2f、主干、检测头、注意力机制、Neck多种结构,也有损失函数和一些细节点上的创新。同时本人一些讲解视频和包含我所有创新的YOLOv10文档并不能在CSDN上传,通过建立交流群的形式在内上传我完整的文件和视频我也会在群内不定期和大家交流回答大家问题。专栏介绍。

2024-07-15 03:57:42 12459 11

原创 YOLOv9改进策略目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

Hello,各位读者们好本专栏自开设两个月以来已经更新改进教程50余篇其中包含RepNCSPELAN4、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新。同时本人一些讲解视频和包含我所有创新的YOLOv9文档并不能在CSDN上传(所有的创新点都经过我的测试是可用的,得到该文件之后大家可以随意组合使用),所以会建立群的形式在内上传我的文件和视频我也会在群内不定期和大家交流回答大家问题,同时定期会更新一些文章的创新点(经过我融合测试后的,先到先得)。

2024-05-13 23:17:00 11831 23

原创 RT-DETR改进有效系列目录 | 包含卷积、主干、RepC3、注意力机制、Neck上百种创新机制

Hello,各位读者们好Hello,各位读者,距离第一天发RT-DETR的博客已经过去了接近两个月,这段时间里我深入的研究了一下RT-DETR在ultralytics仓库的使用,旨在为大家解决为什么用v8的仓库训练的时候模型不收敛,精度差的离谱的问题,我也是成功的找到了解决方案,对于ultralytics仓库进行多处改进从而让其还原RT-DETR官方的实验环境从而达到一比一的效果。同时本人一些讲解视频和包含我所有创新的RT-DETR文档。

2024-01-29 03:18:18 17643 49

原创 YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

Hello,各位读者们好本专栏自开设两个月以来已经更新改进教程60余篇其中包含C2f、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新。同时本人一些讲解视频和包含我所有创新的YOLOv8文档并不能在CSDN上传(所有的创新点都经过我的测试是可用的,得到该文件之后大家可以随意组合使用),所以会建立群的形式在内上传我的文件和视频我也会在群内不定期和大家交流回答大家问题,同时定期会更新一些文章的创新点(经过我融合测试后的,先到先得)。本专栏持续更新网络上的所有前沿文章。

2024-01-07 03:41:27 23455 45

原创 YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

Hello,各位读者们好,本专栏自开设两个月以来已经更新改进教程120+余篇其中包含C2f、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新,订阅本专栏以后你不仅可以收获跟专栏的阅读权限,同时可以进Qq群,里面包含集成我所有创新的YOLO最新目录,和我本人录制的视频讲解教程,如果你想要在YOLOv8系列收获一篇论文,我相信订阅本专栏后你一定会有所收获~YOLOv8改进有效系列目录。

2023-12-30 22:44:58 129669 94

原创 时间序列预测专栏目录 | 深度学习、机器学习、融合模型、创新模型实战案例(附代码+数据集+原理介绍)

给大家推荐一下我的时间序列预测专栏,本专栏平均质量分98分,而且本专栏目前免费阅读,其中涉及机器学习、深度学习、融合模型、个人创新模型、数据分析等一系列有关时间序列的专栏,其中的实战的案例不仅有简单的模型类似于机器学习的ARIMA、Xgboost也有复杂的类似于深度学习的TPA-LSTM,还有个人创新的模型堆叠CNN-GRU-LSTM,同时本专栏的实战案例后期会持续的进行更新,复现各种最新的时间序列预测模型。时间序列预测的初学者、时间序列预测的工作者、数据分析的初学者。

2023-11-08 23:55:34 14562 11

原创 YOLOv11改进 | 特殊场景检测篇 | 最新的多尺度特征提取DICAM(全网独家首发,增强水下图像的质量)

本文给大家带来的最新改进机制是多尺度特征提取和通道注意力机制DICAM,深度Inception和通道注意力模块(DICAM)主要用于用于增强水下图像的质量、对比度和色偏。所提出的DICAM模型考虑了水下图像的比例退化和不均匀色偏,从而提高图像的质量。通过在两个公开的水下图像增强数据集上的广泛实验,验证了我们提出的模型在全参考和无参考图像质量评估指标方面,相比几种最先进的传统方法和深度学习方法的优越性。

2025-01-21 02:57:25 299 1

原创 YOLOv11改进 | 细节创新篇 | 最新动态特征融合模块DFF二次创新C3k2助力yolov11有效涨点(全网独家首发)

本文给大家带来的最新改进机制是D-Net: Dynamic Large Kernel with Dynamic Feature Fusion for Volumetric Medical Image Segmentation文章提出的动态特征融合(DFF)模块,我将其用于二次创新C3k2机制,利用其能够解决不同尺度的局部特征在融合时的信息丢失的能力, DFF基于全局信息自适应地融合不同尺度的局部特征图,使得网络能够在更大的感受野下有效结合多尺度信息,通过动态融合,DFF能够更好地保留局部特征的细节,同时增强

2025-01-21 02:56:27 270

原创 YOLOv11改进 | 细节创新篇篇 | 最新双时相特征聚合模块BFAM助力yolov11有效涨点(二次创新C3k2全网独家首发)

本文给大家带来的最新改进机制是2024年的双时相特征聚合模块BFAM,其中双时相特征聚合模块(BFAM)基于空间-时间特征聚合多种感受野的特征,同时保留了细粒度信息和纹理信息,增强了变化检测的准确性,我将其用于二次创新yolov11中的C3k2模块,目的是为了提高了图像变化检测的准确性,解决噪声和信息丢失的问题,本文的内容为独家创新,下图为BFAM网络的结构图。欢迎大家订阅我的专栏一起学习YOLO,购买专栏读者联系读者入群获取进阶项目文件!

2025-01-21 02:55:36 178

原创 YOLOv11改进 | 检测头篇 | 2024独家创新自适应性DWConv改进v11检测头独创FADWCHead(全网独家首发创新)

本文给大家带来的最新改进是独家创新利用改进YOLOv11的检测头,频率自适应膨胀卷积(FADC),FADC的核心思想是根据图像的局部频率成分动态调整膨胀率。这种方法使得网络能够根据图像内容的局部变化来调整感受野,从而在细节丰富或高频信息密集的区域提高性能,本文内容为博主全网独创新,下图为精度对比表现。YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍二、原理介绍三、核心代码四、添加教程4.1 修改一4.2 修改二4.3 修改三4.4 修改四4.5 修改五。

2024-12-17 03:00:00 2507

原创 YOLOv8改进 | 主干/Backbone篇 | 2024最新重写星辰StarNet助力yolov8有效涨点(yolov8全系列轻量化)

本文给大家带来的最新改进机制是Rewrite the Stars,其探讨了“星操作”(即元素级的乘法)在网络设计中的潜力。文章提出,星操作能够将输入映射到高维的非线性特征空间中,而不需要增加网络的宽度。这个过程类似于机器学习中的核技巧,但通过保持网络的紧凑性和低延迟实现了高效的计算。本文将其添加到YOLOv8中并且根据yolov8的N、S、M、L、X进行缩放和扩张,yolov8全系列可实现轻量化。

2024-12-17 00:07:16 1503

原创 YOLOv11改进 | 主干/Backbone篇 | 2024最新重写星辰StarNet助力yolov11有效涨点(yolov11全系列轻量化)

本文给大家带来的最新改进机制是Rewrite the Stars,其探讨了“星操作”(即元素级的乘法)在网络设计中的潜力。文章提出,星操作能够将输入映射到高维的非线性特征空间中,而不需要增加网络的宽度。这个过程类似于机器学习中的核技巧,但通过保持网络的紧凑性和低延迟实现了高效的计算。本文将其添加到YOLOv11中并且根据yolov11的N、S、M、L、X进行缩放和扩张,yolov11全系列可实现轻量化。

2024-12-16 00:37:34 1232 2

原创 YOLOv11改进 | Conv/卷积篇 | 2024最新线性可变形卷积LDConv替换传统下采样二次创新C3k2(附代码 + 修改方式)

本文给大家带来的最新改进机制是利用2024最新的线性可变形卷积LDConv替换YOLOv11的传统下采样操作(值得一提的是这个作者和RFAConv是同一个作者),介绍了一种新型的卷积操作——线性可变形卷积(LDConv)。LDConv 旨在解决标准卷积操作的局限性,标准卷积在固定形状和大小的局部窗口中进行采样,难以动态适应不同物体的形状。可变形卷积(Deformable Conv)虽然允许灵活的采样位置,但其参数数量随着卷积核大小呈平方增长,计算效率较低。LDConv 提供了比可变形卷积更大的灵活性。

2024-11-19 05:38:09 2370 10

原创 YOLOv11改进 | Conv/卷积篇 | 利用ModulatedDeformConv二次创新C3k2(降低网络层数 + 计算量)

本文给大家带来的最新改进机制是来替换我们模型的下采样操作,同时含二次创新C3k2机制,其主要思想是通过引入可学习的空间偏移量,实现感受野的动态调整,增强卷积神经网络对图像中几何变换的适应能力。不同于其它的Conv这种可变形Conv主要就是通过学习下采样的位置来进行提高检测精度,但是这种方法可以减少计算量,网络层数所以这个方法还是比较推荐大家在自己数据集上尝试一下的,能够减少网络层数的机制不多。欢迎大家订阅我的专栏一起学习YOLO!

2024-11-17 01:25:46 1395 1

原创 YOLOv11改进 | 融合改进篇 | 华为VanillaNet配合HSFPN助力yolov11有效涨点(教你如何融合创新点)

本文给大家带来的最新改进机制是华为VanillaNet主干配合HSFPN实现融合涨点,这个主干是一种注重极简主义和效率的神经网络我也将其进行了实验, 其中的HSFPN其是一种为白细胞检测设计的网络结构,主要用于解决白细胞数据集中的多尺度挑战。特征选择模块和特征融合模块,在本文的下面均会有讲解,这个结构是非常新颖的。其可以起到特征选择的作用,我将其融合在一起,大家可以复制过去在其基础上配合我的损失函数,然后再加一个检测头如果在你的数据上有涨点效果大家就可以开始撰写论文了。

2024-11-16 02:14:25 903

原创 YOLOv11改进 | 融合改进篇 | ASFYOLO配合RepViT助力yolov11有效涨点(教你如何融合改进机制创新点)

本文给大家带来的最新改进机制是融合改进,最近有好几个读者和我反应单独的机制都能够涨点,一融合起来就掉点,这是大家不了解其中的原理(这也是为什么我每一个机制都给大家讲解一下原理,大家要明白其中的每个单独的机制涨点原理然后才能够更好的融合,有一些结构是有冲突的),不知道哪些模块和那些模块融合起来才能够涨点。所以本文给大家带来的改进机制是融合的融合改进机制,同时本文的RepViT可以替换专栏内的任何一个主干。

2024-11-16 01:57:04 1052 2

原创 YOLOv11改进 | 融合改进篇 | 轻量级移动端网络ShuffleNetV2融合CCFM参数量仅百万(附代码+修改教程)

本文给大家带来的最新改进内容是ShuffleNetV2融合CCFM,这是一种为移动设备设计的高效CNN架构。其在ShuffleNetV1的基础上强调除了FLOPs之外,还应考虑速度、内存访问成本和平台特性。(我在YOLOv11n上修改该主干降低了GFLOPs,参数量也有大幅度下降,其非常适合轻量化的读者来使用,同时精度也有一定程度的上涨)。本文通过介绍其主要框架原理,然后教你如何添加该网络结构到网络模型中。

2024-11-16 01:30:14 1345

原创 YOLOv11改进 | 融合改进篇 | Damo-YOLO融合SwinTransformer轻量化创新yolov11(可替换专栏20+主干)

本文给大家带来的最新改进机制是融合改进,利用Damo-YOLO配合,其中Damo-YOLO和在我前面的文章都已经讲过了如何使用,本文主要讲一下将他们融合起来的注意事项以及使用方法,同时在开始讲解之前推荐一下我的专栏,本专栏的内容支持(分类、检测、分割、追踪、关键点检测),专栏目前为限时折扣(相同文章数量全网最低)欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。欢迎大家订阅我的专栏一起学习YOLO!

2024-11-15 23:38:17 761

原创 YOLOv11改进 | 融合改进篇 | BiFPN+ MobileNetv4(教你如何融合改进机制,可替换专栏20+种主干)

本文给大家带来的最新改进机制是融合改进,最近有好几个读者和我反应单独的机制都能够涨点,一融合起来就掉点,这是大家不了解其中的原理(这也是为什么我每一个机制都给大家讲解一下原理,大家要明白其中的每个单独的机制涨点原理然后才能够更好的融合,有一些结构是有冲突的,不知道哪些模块和那些模块融合起来才能够涨点。所以本文给大家带来的改进机制是融合的融合改进机制,同时本文的MobileNetV4可以替换本专栏的其它任何主干网络机制.。

2024-11-15 22:55:04 1628 1

原创 YOLOv11改进 | Conv/卷积篇 | 2024最新Kolmogorov-Arnold网络架构下的KANConv(包含九种不同类型激活函数的KANConv2d)

本文给大家带来的改进机制是2024最新的,Kolmogorov-Arnold 网络(Convolutional KANs),这种架构旨在将 Kolmogorov-Arnold 网络(KANs)的非线性激活函数整合到卷积层中,从而替代传统卷积神经网络(CNNs)的线性变换。与标准的卷积神经网络(CNN)相比,KANConv 层引入了更多的参数,因为每个卷积核元素都需要额外的可学习函数。这使得它能够更好地捕捉数据中的空间关系。

2024-11-15 01:51:13 1047 1

原创 YOLOv11改进 | Conv/卷积篇 | 利用MobileNetV4的UIB模块二次创新C3k2适配yolov11扩展率(全网独家首发,轻量化)

本文给大家带来的最新改进机制是利用的UIB模块二次创新C3k2,其中UIB模块来自2024.5月发布的MobileNetV4网络,其是一种高度优化的神经网络架构,专为移动设备设计。它最新的改动总结主要有两点采用了通用反向瓶颈(UIB,也就是本文利用的结构)和针对移动加速器优化的Mobile MQA注意力模块(一种全新的注意力机制)。我将其用于C2f的二次创新在V8n上参数量为220W(下降约一百万),计算量为6.2GFLOPs,非常适用于想要轻量化网络模型的读者来使用,同时本文结构为本专栏独家创新。

2024-11-15 01:44:31 1381 1

原创 YOLOv11改进 | 主干/Backbone篇 | 双主干思想给yolov11增加辅助特征提取主干(全网独家创新)

本文给大家带来的最新改进机制是结合目前SOTAYOLOv9的思想利用双主干网络来改进YOLOv11(本专栏目前发布以来改进最大的内容,同时本文内容为我个人一手整理全网独家首发 | 就连V9官方不支持的模型宽度和深度修改我都均已提供,本文内容支持YOLOv11全系列模型从n到x均可使用),本文的内容超级适合想要发表论文的读者创新性不够,工作量不够的,本文的改进在感官上给人就有一种工作量多和创新点十足的感觉,同时本专栏内容以后均采用NEU-DET数据集进行对比实验模型(避免大家质疑数据集质量的问题),本文内容为

2024-11-15 01:19:35 1478 1

原创 YOLOv11改进 | 细节创新篇 | iAFF迭代注意力特征融合改进C3k2助力yolov11有效涨点

本文给大家带来的最新改进机制是iAFF(迭代注意力特征融合),其主要思想是通过改善特征融合过程来提高检测精度。传统的特征融合方法如加法或串联简单,未考虑到特定对象的融合适用性。iAFF通过引入多尺度通道注意力模块(我个人觉得这个改进机制就算融合了注意力机制的求和操作),更好地整合不同尺度和语义不一致的特征。该方法属于细节上的改进并不影响任何其它的模块,非常适合大家进行融合改进,单独使用也是有一定的涨点效果。欢迎大家订阅我的专栏一起学习YOLO!

2024-11-15 00:36:40 1134

原创 YOLOv11改进 | Neck篇 | 结合SDI和ASF-YOLO形成全新的特征融合网络网络(分割高效涨点,二次创新)

本文给大家带来的改进机制是利用多层次特征融合模块(SDI)配上经典的加权双向特征金字塔网络ASF-YOLO的Neck形成一种全新的Neck网络结构,从而达到二次创新的效果,其中(SDI)模块的主要思想是通过整合编码器生成的层级特征图来增强图像中的语义信息和细节信息。ASF-YOLO(发布于2023.12月份的最新机制)其是特别设计用于细胞实例分割。这个模型通过结合空间和尺度特征,提高了在处理细胞图像时的准确性和速度。在实验中,ASF-YOLO。

2024-11-13 23:58:29 1533

原创 YOLOv11改进 | Neck篇 | SDI结合BiFPN全新的特征融合网络(全网独家创新)

本文给大家带来的最新改进机制是利用多层次特征融合模块(SDI)配上经典的加权双向特征金字塔网络Bi-FPN形成一种全新的Neck网络结构,从而达到二次创新的效果,其中(SDI)模块的主要思想是通过整合编码器生成的层级特征图来增强图像中的语义信息和细节信息。Bi-FPN无需过多介绍其作为经典的特征金字塔网络其效果一直以来都是非常的不错,其中Bi-FPN的劣势主要是时间过于久远,但是SDI。

2024-11-13 23:58:21 1543

原创 YOLOv11改进 | 进阶实战篇 | 利用辅助超推理算法SAHI让小目标无所谓遁形(支持视频和图片推理)

本文给大家带来的最新改进是进阶实战篇,利用辅助超推理算法SAHI进行推理,同时官方提供的版本中支持视频,我将其进行改造后不仅支持视频同时支持图片的推理方式,SAHI主要的推理场景是针对于小目标检测(检测物体较大的不适用,因为会将一些大的物体切割开来从而导致误检),检测效果非常的好对于小目标检测,尤其是无人机航拍的图片检测或者远距离拍摄的图片,本文中附代码+详细的参数讲解并有教程示例!YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍二、论文的提出三、项目完整代码。

2024-11-13 23:58:08 1621

原创 YOLOv11改进 | 进阶实战篇 | 利用YOLOv11进行过线统计(可用于人 、车过线统计)

Hello,各位读者,最近会给大家发一些进阶实战的讲解,如何利用YOLOv11现有的一些功能进行一些实战, 让我们不仅会改进YOLOv11,也能够利用YOLOv11去做一些简单的小工作,后面我也会将这些功能利用PyQt或者是pyside2做一些小的界面给大家使用。在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进(大家拿到之后添加另外一个改进机制在你的数据集上实现涨点即可撰写论文),还有各种前沿顶会改进机制 |,更有包含我所有附赠的文件。

2024-11-13 23:58:00 842

原创 YOLOv11改进 | 进阶实战篇 | 利用YOLOv11进行视频划定区域目标统计计数

Hello,各位读者最近会给大家发一些进阶实战的讲解,如何利用YOLOv11现有的一些功能进行一些实战, 让我们不仅会改进YOLOv11,也能够利用YOLOv11去做一些简单的小工作,后面我也会将这些功能利用PyQt或者是pyside2做一些小的界面给大家使用。

2024-11-13 23:57:52 963

原创 YOLOv11改进 | 模型知识蒸馏篇 | 利用模型蒸馏改进YOLOv11进行无损涨点 | CWDLoss(在线蒸馏 + 离线蒸馏)

这篇文章给大家带来最新改进的是模型的蒸馏利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv11的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了!欢迎大家订阅我的专栏一起学习YOLO!

2024-11-13 01:02:13 1075 2

原创 YOLOv11改进 | 模型知识蒸馏篇 | 利用模型蒸馏改进YOLOv11进行无损涨点 | MGDLoss(在线蒸馏 + 离线蒸馏)

这篇文章给大家带来最新改进的是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv11的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了!欢迎大家订阅我的专栏一起学习YOLO!

2024-11-13 01:01:30 801

原创 YOLOv11改进 | 模型知识蒸馏篇 | 利用模型蒸馏改进YOLOv11进行无损涨点 | MimicLoss(在线蒸馏 + 离线蒸馏)

这篇文章给大家带来的最新改进是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv11的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了!欢迎大家订阅我的专栏一起学习YOLO!

2024-11-13 01:01:13 871

原创 YOLOv11改进 | 模型知识蒸馏篇 | 利用模型蒸馏改进YOLOv11进行无损涨点 | 在线蒸馏 (附代码 + 完整文件 + 解析教程)

这篇文章给大家带来的最新改进是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv11的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了,本文内容为在线蒸馏教程,之前的文章为离线蒸馏!

2024-11-13 01:00:54 1006

原创 YOLOv11改进 | 模型知识蒸馏篇 | 利用模型蒸馏改进YOLOv11进行无损涨点 | 离线蒸馏(附代码 + 完整文件 + 解析教程)

这篇文章给大家带来的最新改进是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv8的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了!欢迎大家订阅我的专栏一起学习YOLO!

2024-11-13 01:00:12 1310

原创 YOLOv11改进 | Neck篇 | 2024最新TPAMI机制FreqFusion二次创新BiFPN(全网独家创新)

本文给大家带来的最新改进机制是利用2024-TPAMI最新机制FreqFusion二次创新BiFPN《Frequency-aware Feature Fusion for Dense Image Prediction》这篇文章的主要贡献是提出了一种新的特征融合方法(FreqFusion),旨在解决密集图像预测任务中的类别内不一致性和边界位移问题。本文将其和BiFPN进行结合实现二次创新BiFPN机制,相比于原始的YOLOv11本文的内容可以达到一定的轻量化,本文的内容在作者的多类别数据集上实现了涨点。

2024-11-10 02:21:52 1468 4

原创 YOLOv11改进 | Neck篇 | 2024最新MFDS-DETR的HS-FPN改进yolov11特征融合层(全网独家首发)

本文给大家带来的最新改进机制是最近这几天发布的改进机制MFDS-DETR提出的一种HS-FPN结构,其是一种为白细胞检测设计的网络结构,主要用于解决白细胞数据集中的多尺度挑战。特征选择模块和特征融合模块在本文的下面均会有讲解,这个结构是非常新颖的。其可以起到特征选择的作用,非常适合轻量化的读者来使用,其存在二次创新和多次创新的机会,在近期内我会对其进行更加轻量化和精度更高的二次创新,利用该结构参数量下降至197W,计算量降低至7.0GFLOPs,本文结构为我独家复现,全网目前无第二份大家可以抓紧使用。

2024-11-10 01:46:15 1214

原创 YOLOv11改进 | Neck篇 | 利用ASF-YOLO改进yolov11特征融合层助力yolov11有效涨点(适用于实例分割和目标检测)

本文给大家带来的最新改进机制是ASF-YOLO,其是特别设计用于细胞实例分割。这个模型通过结合空间和尺度特征,提高了在处理细胞图像时的准确性和速度。在实验中,ASF-YOLO在2018年数据科学竞赛数据集上取得了卓越的分割准确性和速度,达到了0.91的box mAP(平均精度),0.887的mask mAP,以及47.3FPS的推理速度,效果非常的好,这个结构本来是用于分割的,我将其移植到了目标检测的模型上,所以其可以适用于分割和目标检测,

2024-11-10 00:58:08 949

原创 YOLOv11改进 | Neck篇 | 利用Gold-YOLO改进yolov11对小目标检测能力(全网独家首发)

本文给大家带来的最新改进机制是Gold-YOLO利用其Neck改进v8的Neck,GoLd-YOLO引入了一种新的机制——信息聚集-分发。这个机制通过全局融合不同层次的特征并将融合后的全局信息注入到各个层级中,从而实现更高效的信息交互和融合。这种方法增强了模型的颈部(neck)信息融合能力(有点类似于长颈鹿的脖子该Neck部分很长)同时也没有显著增加延迟,提高了模型在检测不同大小物体时的性能,同时欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

2024-11-10 00:36:26 1375 2

原创 YOLOv11改进 | 独家创新篇 | 结合iRMB和EMA形成全新的iEMA机制(全网独家创新,教你如何二次创新)

本文给大家带来的最新改进机制是二次创新的机制,二次创新是我们发表论文中关键的一环,为什么这么说,从去年的三月份开始对于图像领域的论文发表其实是变难的了,在那之前大家可能搭搭积木的情况下就可以简单的发表一篇论文,但是从去年开始单纯的搭积木其实发表论文变得越来越难,所以这个时候就需要二次创新,以此来迷惑审稿人,彰显大家的工作量,所以二次创新是非常重要的一点,因为二次创新出来的模块其实基本上就可以算作一个全新的模块了,本文内容经过YOLOv8专栏很多读者反应效果很好。欢迎大家订阅我的专栏一起学习YOLO!

2024-11-09 02:57:07 1310 1

原创 YOLOv11改进 | Conv/卷积篇 | 2024最新高效的超分辨率特征提取模块MAB二次创新C3k2助力yolov11有效涨点(全网独家创新)

本文给大家带来的最新改进机制是Multi-scaleAttentionNetworkforSingleImageSuper-Resolution提出的MAB模块,其旨在提升单图像超分辨率(SISR)任务中的特征提取能力。与传统的RCAN(ResidualChannelAttentionNetwork)风格模块不同,MAB结合了MetaFormer结构,使得特征提取过程更具有效率和适应性。MAB包括两大核心模块:多尺度大核注意力(MLKA)和门控空间注意力单元(GSAU)。

2024-11-09 02:51:17 1131 4

全新的SOTA模型YOLOv9

当今的深度学习方法专注于如何设计最合适的目标函数,以使模型的预测结果尽可能接近真实值。同时,还需要设计一个合适的架构,以便获取足够的信息进行预测。现有方法忽略了一个事实:当输入数据经过逐层的特征提取和空间变换时,会丢失大量信息。本文将深入探讨数据在深度网络中传输时数据丢失的重要问题,即信息瓶颈和可逆函数问题。我们提出了可编程梯度信息(PGI)的概念,以应对深度网络实现多个目标所需的各种变化。PGI能够为目标任务提供完整的输入信息,以计算目标函数,从而获得可靠的梯度信息以更新网络权重。此外,我们还设计了一种基于梯度路径规划的新型轻量级网络架构——广义高效层聚合网络(GELAN)。GELAN的架构证明了PGI在轻量级模型上获得了优越的结果。我们在基于MS COCO数据集的目标检测上验证了所提出的GELAN和PGI。结果显示,GELAN仅使用传统的卷积运算符就实现了比基于深度卷积的最新方法更好的参数利用率。PGI可用于从轻量级到大型的各种模型,它可以获取完整信息,使得从零开始训练的模型比使用大型数据集预训练的最新模型获得更好的结果,比较结果如图1所示。

2024-02-22

全新的SOTA模型YOLOv9原文 + 论文阅读笔记

当今的深度学习方法专注于如何设计最合适的目标函数,以使模型的预测结果尽可能接近真实值。同时,还需要设计一个合适的架构,以便获取足够的信息进行预测。现有方法忽略了一个事实:当输入数据经过逐层的特征提取和空间变换时,会丢失大量信息。本文将深入探讨数据在深度网络中传输时数据丢失的重要问题,即信息瓶颈和可逆函数问题。我们提出了可编程梯度信息(PGI)的概念,以应对深度网络实现多个目标所需的各种变化。PGI能够为目标任务提供完整的输入信息,以计算目标函数,从而获得可靠的梯度信息以更新网络权重。此外,我们还设计了一种基于梯度路径规划的新型轻量级网络架构——广义高效层聚合网络(GELAN)。GELAN的架构证明了PGI在轻量级模型上获得了优越的结果。我们在基于MS COCO数据集的目标检测上验证了所提出的GELAN和PGI。结果显示,GELAN仅使用传统的卷积运算符就实现了比基于深度卷积的最新方法更好的参数利用率。PGI可用于从轻量级到大型的各种模型,它可以获取完整信息,使得从零开始训练的模型比使用大型数据集预训练的最新模型获得更好的结果,比较结果如图1所示。

2024-02-22

时间序列预测实战(十九)魔改Informer模型进行滚动长期预测(科研版本,结果可视化)

在之前的文章中我们已经讲过Informer模型了,但是呢官方的预测功能开发的很简陋只能设定固定长度去预测未来固定范围的值,当我们想要发表论文的时候往往这个预测功能是并不能满足的,所以我在官方代码的基础上增添了一个滚动长期预测的功能,这个功能就是指我们可以第一次预测未来24个时间段的值然后我们像模型中填补 24个值再次去预测未来24个时间段的值(填补功能我设置成自动的了无需大家手动填补),这个功能可以说是很实用的,这样我们可以准确的评估固定时间段的值,当我们实际使用时可以设置自动爬取数据从而产生实际效用。本文修改内容完全为本人个人开发,创作不易所以如果能够帮助到大家希望大家给我的文章点点赞,同时可以关注本专栏(免费阅读),本专栏持续复现各种的顶会内容,无论你想发顶会还是其它水平的论文都能够对你有所帮助。 时间序列预测在许多领域都是关键要素,在这些场景中,我们可以利用大量的时间序列历史数据来进行长期预测,即长序列时间序列预测(LSTF)。然而,现有方法大多设计用于短期问题,如预测48点或更少的数据。随着序列长度的增加,模型的预测能力受到挑战。例如,当预测长度超过48点时,LSTM网络的预测

2023-12-20

roboflow实验数据集-YOLOv8格式

工地数据集,总共二十余类别包含正常物体检测,小目标检测。

2023-12-14

【Google2023】利用TiDE进行长期预测实战(时间序列密集编码器)

大家好,最近在搞论文所以在研究各种论文的思想,这篇文章给大家带来的是TiDE模型由Goggle在2023.8年发布,其主要的核心思想是:基于多层感知机(MLP)构建的编码器-解码器架构,核心创新在于它结合了线性模型的简洁性和速度优势,同时能有效处理协变量和非线性依赖。论文中号称TiDE在长期时间序列预测基准测试中不仅表现匹敌甚至超越了先前的方法,而且在速度上比最好的基于Transformer的模型快5到10倍。在官方的开源代码中是并没有预测未来数据功能的,因为这种都是学术文章发表论文的时候只看测试集表现。我在自己的框架下给其补上了这一功能同时加上了绘图的功能,非常适合大家发表论文的适合拿来做对比模型。TiDE(时间序列密集编码器)模型是一个基于多层感知机(MLP)的编码器-解码器架构,旨在简化长期时间序列预测。该模型结合了线性模型的简单性和速度,同时能够有效处理协变量和非线性依赖。

2023-12-04

Transformer模型实现长期预测并可视化结果(附代码+数据集+原理介绍)

这篇文章给大家带来是Transformer在时间序列预测上的应用,这种模型最初是为了处理自然语言处理(NLP)任务而设计的,但由于其独特的架构和能力,它也被用于时间序列分析。Transformer应用于时间序列分析中的基本思想是:Transformer 在时间序列分析中的应用核心在于其自注意力机制,这使其能够有效捕捉时间序列数据中的长期依赖关系。通过并行处理能力和位置编码,Transformer 不仅提高了处理效率,而且确保了时间顺序的准确性。其灵活的模型结构允许调整以适应不同复杂度这篇文章给大家带来是Transformer在时间序列预测上的应用,这种模型最初是为了处理自然语言处理(NLP)任务而设计的,但由于其独特的架构和能力,它也被用于时间序列分析。Transformer应用于时间序列分析中的基本思想是:Transformer 在时间序列分析中的应用核心在于其自注意力机制,这使其能够有效捕捉时间序列数据中的长期依赖关系。通过并行处理能力和位置编码,Transformer 不仅提高了处理效率,而且确保了时间顺序的准确性。定制化训练个人数据集进行训练利用python和pytorch实现

2023-11-12

FNet模型实现滚动长期预测并可视化结果,定制化数据集进行预测

本博客将介绍一种新的时间序列预测模型——FNet它通过使用傅里叶变换代替自注意力机制,旨在解决传统Transformer模型中的效率问题。FNet模型通过简单的线性变换,包括非参数化的傅里叶变换,来“混合”输入令牌,从而实现了快速且高效的处理方式。这种创新的方法在保持了相对较高的准确性的同时,显著提高了训练速度,特别是在处理长序列数据时更显优势。FNet的工作原理,并通过一个实战案例展示如何实现基于FNet的可视化结果和滚动长期预测。预测类型->多元预测、单元预测、长期预测。适用对象->受硬件所限制的时候,FNet是一种基于Transformer编码器架构的模型,通过替换自注意力子层为简单的线性变换,特别是傅里叶变换,来加速处理过程。FNet架构中的每一层由一个傅里叶混合子层和一个前馈子层组成(下图中的白色框)。傅里叶子层应用2D离散傅里叶变换(DFT)到其输入,一维DFT沿序列维度和隐藏维度。总结:FNet相对于传统的Transformer的改进其实就一点就是将注意力机制替换为傅里叶变换,所以其精度并没有提升(我觉得反而有下降,但是论文内相等,但是从我的实验角度结果分析精度是有下降的

2023-11-11

DLinear模型实现滚动长期预测并可视化预测结果

本文给大家带来是DLinear模型,DLinear是一种用于时间序列预测(TSF)的简单架构,DLinear的核心思想是将时间序列分解为趋势和剩余序列,并分别使用两个单层线性网络对这两个序列进行建模以进行预测(值得一提的是DLinear的出现是为了挑战Transformer在实现序列预测中有效性)。本文的讲解内容包括:模型原理、数据集介绍、参数讲解、模型训练和预测、结果可视化、训练个人数据集,讲解顺序如下->预测类型->这个模型我在写的过程中为了节省大家训练自己数据集,我基本上把大部分的参数都写好了。我看论文的内容大比分都是对比实验,因为DLinear的产生就是为了质疑Transformer所以他和各种Transformer的模型进行对比试验,因为本篇文章就是DLinear的实战案例,对比的部分我就不讲了,大家有兴趣可以看看论文内容在最上面我已经提供了链接。 到此本文已经全部讲解完成了,希望能够帮助到大家,在这里也给大家推荐一些我其它的博客的时间序列实战案例讲解,其中有数据分析的讲解就是我前面提到的如何设置参数的分析博客,最后希望大家订阅我的专栏,本专栏均分文章均分98,并且免费阅读。

2023-11-11

SCINet时间序列预测实战(附代码+数据集+原理介绍)

这篇文章给大家带来的是关于SCINet实现时间序列滚动预测功能的讲解,SCINet是样本卷积交换网络的缩写(Sample Convolutional Interchange Network),SCINet号称是比现有的卷积模型和基于Transformer的模型准确率都有提升(我实验了几次效果确实不错)。本篇文章讲解的代码是我个人根据官方的代码总结出来的模型结构并且进行改进增加了滚动预测的功能。模型我用了两个数据集进行测试,一个是某个公司的话务员接线量一个是油温效果都不错,我下面讲解用油温的数据进行案例的讲解SCINet是一个层次化的降采样-卷积-交互TSF框架,有效地对具有复杂时间动态的时间序列进行建模。通过在多个时间分辨率上迭代提取和交换信息,可以学习到具有增强可预测性的有效表示。此外,SCINet的基础构件,SCI-Block,通过将输入数据/特征降采样为两个子序列,然后使用不同的卷积滤波器提取每个子序列的特征。为了补偿降采样过程中的信息损失,每个SCI-Block内部都加入了两种卷积特征之间的交互学习。个人总结:SCINet就是在不同的维度上面对数据进行处理进行特征提取工作,从而

2023-11-11

Informer模型实战案例(代码+数据集+参数讲解)

本篇博客带大家看的是Informer模型进行时间序列预测的实战案例,它是在2019年被提出并在ICLR 2020上被评为Best Paper,可以说Informer模型在当今的时间序列预测方面还是十分可靠的,Informer模型的实质是注意力机制+Transformer模型,Informer模型的核心思想是将输入序列进行自注意力机制的处理,以捕捉序列中的长期依赖关系,并利用Transformer的编码器-解码器结构进行预测,通过阅读本文你可以学会利用个人数据集训练模型。Informer是一种用于长序列时间序列预测的Transformer模型,但是它与传统的Transformer模型又有些不同点,与传统的Transformer模型相比,Informer具有以下几个独特的特点: 1. ProbSparse自注意力机制:Informer引入了ProbSparse自注意力机制,该机制在时间复杂度和内存使用方面达到了O(Llog L)的水平,能够有效地捕捉序列之间的长期依赖关系。 2. 自注意力蒸馏:通过减少级联层的输入,自注意力蒸馏技术可以有效处理极长的输入序列,提高了模型处理长序列的能力

2023-11-10

TPA-LSTM时间序列预测实战案例

本文通过实战案例讲解TPA-LSTM实现多元时间序列预测,在本文中所提到的TPA和LSTM分别是注意力机制和深度学习模型,通过将其结合到一起实现时间序列的预测,本文利用有关油温的数据集来进行训练模型,同时将模型保存到本地,进行加载实现多步长预测,本文所利用的数据集也可以替换成你个人的数据集来进行预测(修改个人的数据集的地方本文也进行了标注),同时本文会对TPA和LSTM分别进行概念的讲解帮助大家理解其中的运行机制原理(包括个人总结已经论文内容)。TPA(Temporal Pattern Attention)注意力机制是一种用于处理时间序列数据的注意力机制。它的工作原理是在传统的注意力机制的基础上引入了时间模式的概念,以更好地捕捉时间序列中的重要模式和特征。LSTM(长短期记忆,Long Short-Term Memory)是一种用于处理序列数据的深度学习模型,属于循环神经网络(RNN)的一种变体,其使用一种类似于搭桥术结构的RNN单元。相对于普通的RNN,LSTM引入了门控机制,能够更有效地处理长期依赖和短期记忆问题,是RNN网络中最常使用的Cell之一。配合我的博客大家可以实现预测。

2023-11-05

修改了DSCN动态蛇形卷积的ultralytics文件

动态蛇形卷积的灵感来源于对管状结构的特殊性的观察和理解,在分割拓扑管状结构、血管和道路等类型的管状结构时,任务的复杂性增加,因为这些结构的局部结构可能非常细长和迂回,而整体形态也可能多变。 因此为了应对这个挑战,作者研究团队注意到了管状结构的特殊性,并提出了动态蛇形卷积(Dynamic Snake Convolution)这个方法。动态蛇形卷积通过自适应地聚焦于细长和迂回的局部结构,准确地捕捉管状结构的特征。这种卷积方法的核心思想是,通过动态形状的卷积核来增强感知能力,针对管状结构的特征提取进行优化。 总之动态蛇形卷积是一种针对管状结构分割任务的创新方法,在许多模型上添加针对一些数据集都能够有效的涨点,其具有重要性和广泛的应用领域。 动态蛇形卷积(Dynamic Snake Convolution)适用于多种模型,可以在多种模型上添加或替换该卷积,本文主要针对的改进模型是YOLOv8模型,并修复动态蛇形卷积官方代码中存在的BUG例如: Expected all tensors to be on the same device, but found at least two devi

2023-11-03

BiFormer: Vision Transformer with Bi-Level Routing Attention论文

研究人员提出了一种名为BiFormer的新型视觉Transformer模型,它以动态稀疏注意力和双层路由为核心。传统的注意力机制在捕捉长距离依赖性方面表现出色,但也带来了巨大的计算和内存开销,因为需要在所有空间位置上计算令牌之间的配对交互。为了解决这个问题,之前的一些方法引入了手工设计的、与内容无关的稀疏性,如将注意力操作限制在局部窗口、轴向条纹或膨胀窗口内。与这些方法不同,该研究提出了一种全新的通过双层路由实现的动态稀疏注意力机制,以实现更灵活的计算分配并具备内容感知性。 具体而言,对于一个查询(query),首先在粗糙的区域级别上过滤掉无关的键值对,然后对剩余的候选区域(即路由区域的并集)应用细粒度的令牌对令牌的注意力计算。该研究提供了一种简单而有效的实现方式,利用稀疏性来节省计算和内存,并且仅涉及适用于GPU的稠密矩阵乘法。基于提出的双层路由注意力机制,研究人员提出了一种名为BiFormer的新型通用视觉Transformer模型。由于BiFormer能够以查询自适应的方式关注一小部分相关令牌,而不受其他无关令牌的干扰,因此在性能和计算效率方面都表现出良好的特性,尤其在密集预测

2023-11-02

动态蛇形卷积(Dynamic Snake Convolution)

准确分割拓扑管状结构、血管和道路等拓扑管状结构在各个领域都至关重要,确保下游任务的准确性和效率。然而,许多因素导致任务复杂化,包括局部结构薄和全局形态多变。在这项工作中,我们注意到管状结构的特殊性并利用这一知识指导我们的 DSCNet,在特征提取、特征融合和损失约束三个阶段同时增强感知。首先,我们提出了首先,我们提出了一种动态蛇形卷积法,通过自适应地聚焦于细长和迂回的局部结构来准确捕捉管状结构的特征。随后,我们提出了一种多视角特征融合策略,以补充在特征融合过程中关注来自多个视角的特征,确保保留来自不同全局形态的重要信息。不同全局形态的重要信息。最后,我们提出了一种连续性基于持久同源性的连续性约束损失函数最后,提出了一种基于持久同源性的连续性约束损失函数,以更好地约束分割的拓扑连续性。 

2023-10-31

时间序列预测模型实战案例深度学习华为MTS-Mixers模型

首先我们要对时间序列概念有一个基本的了解时间序列预测大致分为两种一种是单元时间序列预测另一种是多元时间序列预测单元时间序列预测是指只考虑一个时间序列的预测模型。它通常用于预测单一变量的未来值,例如股票价格、销售量等。在单元时间序列预测中,我们需要对历史数据进行分析,确定趋势、季节性和周期性等因素,并使用这些因素来预测未来的值。常见的单元时间序列预测模型有移动平均模型(MA)自回归模型(AR)自回归移动平均模型(ARMA)差分自回归移动平均模型(ARIMA)后期我也会讲一些最新的预测模型包括Informer,TPA-LSTM,ARIMA,XGBOOST,Holt-winter,移动平均法等等一系列关于时间序列预测的模型,包括深度学习和机器学习方向的模型我都会讲,你可以根据需求选取适合你自己的模型进行预测,如果有需要可以+个关注。

2023-10-27

机器学习ARIMA时间序列预测模型实战案例

ARIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。本章将介绍一个实战案例,利用Python编程语言实现了ARIMA模型并进行预测。通过这个案例,我们将深入了解ARIMA模型的构建过程和关键步骤,并学习如何使用Python中的相关库来进行模型训练和预测。在案例中,我们将使用一组客服的接线量数据作为实验对象。通过分析这些数据,我们将探索数据的特征和规律,进行平稳性检验和差分操作,然后通过自相关和偏自相关图来选择合适的ARIMA模型参数。RIMA模型是一种广泛应用的时间序列预测模型,它结合了自回归(AR)和移动平均(MA)的概念,具有较好的灵活性和准确性。在本篇博客中,我们将深入探讨ARIMA模型的实战应用,并通过Python进行模型的实现和分析。 我们的实战案例基于一组客服接线量的数据。首先,我们对数据进行了详细的探索性分析,以揭示其内在的时间序列特性。对于非平稳的数据,我们使用差分操作使其平稳,以便进行后续的建模和预测。 在模型参数的选择上,我们使用了自相关图(ACF)和偏自相关图(PACF)来帮助确定ARIMA

2023-10-27

时间序列预测模型实战案例基于双向LSTM横向搭配合单向LSTM进行回归问题的解决

内容概要:通过数据集电力变压器油温数据详细的介绍双向LSTM,以及其机制,运行原理,以及如何横向搭配单向的LSTM进行回归问题的解决。 所需数据:在本次的模型所需的数据是电力变压器油温数据,由国家电网提供,该数据集是来自中国同一个省的两个不同县的变压器数据,时间跨度为2年,原始数据每分钟记录一次(用 m 标记),每个数据集包含2年 * 365天 * 24小时 * 60分钟 = 1,051,200数据点。 每个数据点均包含8维特征,包括数据点记录日期,预测目标值OT(oil temperature)和6个不同类型功率负载特征。 适合人群:时间序列和深度学习初学者本文的模型比较简单,易于理解。 阅读建议:可以大致阅读以下,本文件只是一个简单实现版本,并不复杂。 能学到什么:能够从本文件当中读懂深度学习的代码实现过程,对于时间序列有一个简单的了解, (PS:如果你使用你自己的数据进行预测需要将时间列和官方数据集保持一致,因为在数据处理部分我添加了一部分特征工程操作,提取了一些时间信息,因为LSTM不支持时间格式的数据输入,需要转化为数字) 如果大家不懂的地方可以看我的文章部分有详细的讲解。

2023-09-27

时间序列预测模型实战案例(Xgboost)(Python)(机器学习)包括时间序列预测和时间序列分类,点击即可运行!

内容概要 资源包括三部分(时间序列预测部分和时间序列分类部分和所需的测试数据集全部包含在内) 在本次实战案例中,我们将使用Xgboost算法进行时间序列预测。Xgboost是一种强大的梯度提升树算法,适用于各种机器学习任务,它最初主要用于解决分类问题,在此基础上也可以应用于时间序列预测。 时间序列预测是通过分析过去的数据模式来预测未来的数值趋势。它在许多领域中都有广泛的应用,包括金融、天气预报、股票市场等。我们将使用Python编程语言来实现这个案例。 其中包括模型训练部分和保存部分,可以将模型保存到本地,一旦我们完成了模型的训练,我们可以使用它来进行预测。我们将选择合适的输入特征,并根据模型的预测结果来生成未来的数值序列。最后,我们会将预测结果与实际观测值进行对比,评估模型的准确性和性能。 适合人群:时间序列预测的学习者,机器学习的学习者, 能学到什么:本模型能够让你对机器学习和时间序列预测有一个清楚的了解,其中还包括数据分析部分和特征工程的代码操作 阅读建议:大家可以仔细阅读代码部分,其中包括每一步的注释帮助读者进行理解,其中涉及到的知识有数据分析部分和特征工程的代码操作。

2023-09-25

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除