- 博客(764)
- 资源 (18)
- 问答 (1)
- 收藏
- 关注

原创 YOLOv11改进有效涨点专栏目录 | 含卷积、主干、注意力机制、Neck、检测头、损失函数、二次创新C2PSA/C3k2等各种网络结构改进
Hello,各位读者们好.本文为最新YOLOv11有效涨点专栏目录,YOLOv11以及发布了一个月左右,这个过程中我也是给大家整理了许多的机制,其中包含了C3k2、主干(均支持根据yolov11训练的版本进行二次缩放,全系列都能轻量化)、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新。
2024-11-05 02:06:23
20578
28

原创 YOLOv10有效涨点专栏目录 | 包含卷积、主干、检测头、注意力机制、Neck、二次创新、独家创新等上百种创新机制
Hello,各位读者们好本专栏自开设以来已经更新改进教程100余篇其中包含二次创新、独家创新多种改进方法,包含C2f、主干、检测头、注意力机制、Neck多种结构,也有损失函数和一些细节点上的创新。同时本人一些讲解视频和包含我所有创新的YOLOv10文档并不能在CSDN上传,通过建立交流群的形式在内上传我完整的文件和视频我也会在群内不定期和大家交流回答大家问题。专栏介绍。
2024-07-15 03:57:42
12459
11

原创 YOLOv9改进策略目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
Hello,各位读者们好本专栏自开设两个月以来已经更新改进教程50余篇其中包含RepNCSPELAN4、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新。同时本人一些讲解视频和包含我所有创新的YOLOv9文档并不能在CSDN上传(所有的创新点都经过我的测试是可用的,得到该文件之后大家可以随意组合使用),所以会建立群的形式在内上传我的文件和视频我也会在群内不定期和大家交流回答大家问题,同时定期会更新一些文章的创新点(经过我融合测试后的,先到先得)。
2024-05-13 23:17:00
11831
23

原创 RT-DETR改进有效系列目录 | 包含卷积、主干、RepC3、注意力机制、Neck上百种创新机制
Hello,各位读者们好Hello,各位读者,距离第一天发RT-DETR的博客已经过去了接近两个月,这段时间里我深入的研究了一下RT-DETR在ultralytics仓库的使用,旨在为大家解决为什么用v8的仓库训练的时候模型不收敛,精度差的离谱的问题,我也是成功的找到了解决方案,对于ultralytics仓库进行多处改进从而让其还原RT-DETR官方的实验环境从而达到一比一的效果。同时本人一些讲解视频和包含我所有创新的RT-DETR文档。
2024-01-29 03:18:18
17643
49

原创 YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
Hello,各位读者们好本专栏自开设两个月以来已经更新改进教程60余篇其中包含C2f、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新。同时本人一些讲解视频和包含我所有创新的YOLOv8文档并不能在CSDN上传(所有的创新点都经过我的测试是可用的,得到该文件之后大家可以随意组合使用),所以会建立群的形式在内上传我的文件和视频我也会在群内不定期和大家交流回答大家问题,同时定期会更新一些文章的创新点(经过我融合测试后的,先到先得)。本专栏持续更新网络上的所有前沿文章。
2024-01-07 03:41:27
23455
45

原创 YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
Hello,各位读者们好,本专栏自开设两个月以来已经更新改进教程120+余篇其中包含C2f、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新,订阅本专栏以后你不仅可以收获跟专栏的阅读权限,同时可以进Qq群,里面包含集成我所有创新的YOLO最新目录,和我本人录制的视频讲解教程,如果你想要在YOLOv8系列收获一篇论文,我相信订阅本专栏后你一定会有所收获~YOLOv8改进有效系列目录。
2023-12-30 22:44:58
129669
94

原创 时间序列预测专栏目录 | 深度学习、机器学习、融合模型、创新模型实战案例(附代码+数据集+原理介绍)
给大家推荐一下我的时间序列预测专栏,本专栏平均质量分98分,而且本专栏目前免费阅读,其中涉及机器学习、深度学习、融合模型、个人创新模型、数据分析等一系列有关时间序列的专栏,其中的实战的案例不仅有简单的模型类似于机器学习的ARIMA、Xgboost也有复杂的类似于深度学习的TPA-LSTM,还有个人创新的模型堆叠CNN-GRU-LSTM,同时本专栏的实战案例后期会持续的进行更新,复现各种最新的时间序列预测模型。时间序列预测的初学者、时间序列预测的工作者、数据分析的初学者。
2023-11-08 23:55:34
14562
11
原创 YOLOv11改进 | 特殊场景检测篇 | 最新的多尺度特征提取DICAM(全网独家首发,增强水下图像的质量)
本文给大家带来的最新改进机制是多尺度特征提取和通道注意力机制DICAM,深度Inception和通道注意力模块(DICAM)主要用于用于增强水下图像的质量、对比度和色偏。所提出的DICAM模型考虑了水下图像的比例退化和不均匀色偏,从而提高图像的质量。通过在两个公开的水下图像增强数据集上的广泛实验,验证了我们提出的模型在全参考和无参考图像质量评估指标方面,相比几种最先进的传统方法和深度学习方法的优越性。
2025-01-21 02:57:25
299
1
原创 YOLOv11改进 | 细节创新篇 | 最新动态特征融合模块DFF二次创新C3k2助力yolov11有效涨点(全网独家首发)
本文给大家带来的最新改进机制是D-Net: Dynamic Large Kernel with Dynamic Feature Fusion for Volumetric Medical Image Segmentation文章提出的动态特征融合(DFF)模块,我将其用于二次创新C3k2机制,利用其能够解决不同尺度的局部特征在融合时的信息丢失的能力, DFF基于全局信息自适应地融合不同尺度的局部特征图,使得网络能够在更大的感受野下有效结合多尺度信息,通过动态融合,DFF能够更好地保留局部特征的细节,同时增强
2025-01-21 02:56:27
270
原创 YOLOv11改进 | 细节创新篇篇 | 最新双时相特征聚合模块BFAM助力yolov11有效涨点(二次创新C3k2全网独家首发)
本文给大家带来的最新改进机制是2024年的双时相特征聚合模块BFAM,其中双时相特征聚合模块(BFAM)基于空间-时间特征聚合多种感受野的特征,同时保留了细粒度信息和纹理信息,增强了变化检测的准确性,我将其用于二次创新yolov11中的C3k2模块,目的是为了提高了图像变化检测的准确性,解决噪声和信息丢失的问题,本文的内容为独家创新,下图为BFAM网络的结构图。欢迎大家订阅我的专栏一起学习YOLO,购买专栏读者联系读者入群获取进阶项目文件!
2025-01-21 02:55:36
178
原创 YOLOv11改进 | 检测头篇 | 2024独家创新自适应性DWConv改进v11检测头独创FADWCHead(全网独家首发创新)
本文给大家带来的最新改进是独家创新利用改进YOLOv11的检测头,频率自适应膨胀卷积(FADC),FADC的核心思想是根据图像的局部频率成分动态调整膨胀率。这种方法使得网络能够根据图像内容的局部变化来调整感受野,从而在细节丰富或高频信息密集的区域提高性能,本文内容为博主全网独创新,下图为精度对比表现。YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍二、原理介绍三、核心代码四、添加教程4.1 修改一4.2 修改二4.3 修改三4.4 修改四4.5 修改五。
2024-12-17 03:00:00
2507
原创 YOLOv8改进 | 主干/Backbone篇 | 2024最新重写星辰StarNet助力yolov8有效涨点(yolov8全系列轻量化)
本文给大家带来的最新改进机制是Rewrite the Stars,其探讨了“星操作”(即元素级的乘法)在网络设计中的潜力。文章提出,星操作能够将输入映射到高维的非线性特征空间中,而不需要增加网络的宽度。这个过程类似于机器学习中的核技巧,但通过保持网络的紧凑性和低延迟实现了高效的计算。本文将其添加到YOLOv8中并且根据yolov8的N、S、M、L、X进行缩放和扩张,yolov8全系列可实现轻量化。
2024-12-17 00:07:16
1503
原创 YOLOv11改进 | 主干/Backbone篇 | 2024最新重写星辰StarNet助力yolov11有效涨点(yolov11全系列轻量化)
本文给大家带来的最新改进机制是Rewrite the Stars,其探讨了“星操作”(即元素级的乘法)在网络设计中的潜力。文章提出,星操作能够将输入映射到高维的非线性特征空间中,而不需要增加网络的宽度。这个过程类似于机器学习中的核技巧,但通过保持网络的紧凑性和低延迟实现了高效的计算。本文将其添加到YOLOv11中并且根据yolov11的N、S、M、L、X进行缩放和扩张,yolov11全系列可实现轻量化。
2024-12-16 00:37:34
1232
2
原创 YOLOv11改进 | Conv/卷积篇 | 2024最新线性可变形卷积LDConv替换传统下采样二次创新C3k2(附代码 + 修改方式)
本文给大家带来的最新改进机制是利用2024最新的线性可变形卷积LDConv替换YOLOv11的传统下采样操作(值得一提的是这个作者和RFAConv是同一个作者),介绍了一种新型的卷积操作——线性可变形卷积(LDConv)。LDConv 旨在解决标准卷积操作的局限性,标准卷积在固定形状和大小的局部窗口中进行采样,难以动态适应不同物体的形状。可变形卷积(Deformable Conv)虽然允许灵活的采样位置,但其参数数量随着卷积核大小呈平方增长,计算效率较低。LDConv 提供了比可变形卷积更大的灵活性。
2024-11-19 05:38:09
2370
10
原创 YOLOv11改进 | Conv/卷积篇 | 利用ModulatedDeformConv二次创新C3k2(降低网络层数 + 计算量)
本文给大家带来的最新改进机制是来替换我们模型的下采样操作,同时含二次创新C3k2机制,其主要思想是通过引入可学习的空间偏移量,实现感受野的动态调整,增强卷积神经网络对图像中几何变换的适应能力。不同于其它的Conv这种可变形Conv主要就是通过学习下采样的位置来进行提高检测精度,但是这种方法可以减少计算量,网络层数所以这个方法还是比较推荐大家在自己数据集上尝试一下的,能够减少网络层数的机制不多。欢迎大家订阅我的专栏一起学习YOLO!
2024-11-17 01:25:46
1395
1
原创 YOLOv11改进 | 融合改进篇 | 华为VanillaNet配合HSFPN助力yolov11有效涨点(教你如何融合创新点)
本文给大家带来的最新改进机制是华为VanillaNet主干配合HSFPN实现融合涨点,这个主干是一种注重极简主义和效率的神经网络我也将其进行了实验, 其中的HSFPN其是一种为白细胞检测设计的网络结构,主要用于解决白细胞数据集中的多尺度挑战。特征选择模块和特征融合模块,在本文的下面均会有讲解,这个结构是非常新颖的。其可以起到特征选择的作用,我将其融合在一起,大家可以复制过去在其基础上配合我的损失函数,然后再加一个检测头如果在你的数据上有涨点效果大家就可以开始撰写论文了。
2024-11-16 02:14:25
903
原创 YOLOv11改进 | 融合改进篇 | ASFYOLO配合RepViT助力yolov11有效涨点(教你如何融合改进机制创新点)
本文给大家带来的最新改进机制是融合改进,最近有好几个读者和我反应单独的机制都能够涨点,一融合起来就掉点,这是大家不了解其中的原理(这也是为什么我每一个机制都给大家讲解一下原理,大家要明白其中的每个单独的机制涨点原理然后才能够更好的融合,有一些结构是有冲突的),不知道哪些模块和那些模块融合起来才能够涨点。所以本文给大家带来的改进机制是融合的融合改进机制,同时本文的RepViT可以替换专栏内的任何一个主干。
2024-11-16 01:57:04
1052
2
原创 YOLOv11改进 | 融合改进篇 | 轻量级移动端网络ShuffleNetV2融合CCFM参数量仅百万(附代码+修改教程)
本文给大家带来的最新改进内容是ShuffleNetV2融合CCFM,这是一种为移动设备设计的高效CNN架构。其在ShuffleNetV1的基础上强调除了FLOPs之外,还应考虑速度、内存访问成本和平台特性。(我在YOLOv11n上修改该主干降低了GFLOPs,参数量也有大幅度下降,其非常适合轻量化的读者来使用,同时精度也有一定程度的上涨)。本文通过介绍其主要框架原理,然后教你如何添加该网络结构到网络模型中。
2024-11-16 01:30:14
1345
原创 YOLOv11改进 | 融合改进篇 | Damo-YOLO融合SwinTransformer轻量化创新yolov11(可替换专栏20+主干)
本文给大家带来的最新改进机制是融合改进,利用Damo-YOLO配合,其中Damo-YOLO和在我前面的文章都已经讲过了如何使用,本文主要讲一下将他们融合起来的注意事项以及使用方法,同时在开始讲解之前推荐一下我的专栏,本专栏的内容支持(分类、检测、分割、追踪、关键点检测),专栏目前为限时折扣(相同文章数量全网最低)欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。欢迎大家订阅我的专栏一起学习YOLO!
2024-11-15 23:38:17
761
原创 YOLOv11改进 | 融合改进篇 | BiFPN+ MobileNetv4(教你如何融合改进机制,可替换专栏20+种主干)
本文给大家带来的最新改进机制是融合改进,最近有好几个读者和我反应单独的机制都能够涨点,一融合起来就掉点,这是大家不了解其中的原理(这也是为什么我每一个机制都给大家讲解一下原理,大家要明白其中的每个单独的机制涨点原理然后才能够更好的融合,有一些结构是有冲突的,不知道哪些模块和那些模块融合起来才能够涨点。所以本文给大家带来的改进机制是融合的融合改进机制,同时本文的MobileNetV4可以替换本专栏的其它任何主干网络机制.。
2024-11-15 22:55:04
1628
1
原创 YOLOv11改进 | Conv/卷积篇 | 2024最新Kolmogorov-Arnold网络架构下的KANConv(包含九种不同类型激活函数的KANConv2d)
本文给大家带来的改进机制是2024最新的,Kolmogorov-Arnold 网络(Convolutional KANs),这种架构旨在将 Kolmogorov-Arnold 网络(KANs)的非线性激活函数整合到卷积层中,从而替代传统卷积神经网络(CNNs)的线性变换。与标准的卷积神经网络(CNN)相比,KANConv 层引入了更多的参数,因为每个卷积核元素都需要额外的可学习函数。这使得它能够更好地捕捉数据中的空间关系。
2024-11-15 01:51:13
1047
1
原创 YOLOv11改进 | Conv/卷积篇 | 利用MobileNetV4的UIB模块二次创新C3k2适配yolov11扩展率(全网独家首发,轻量化)
本文给大家带来的最新改进机制是利用的UIB模块二次创新C3k2,其中UIB模块来自2024.5月发布的MobileNetV4网络,其是一种高度优化的神经网络架构,专为移动设备设计。它最新的改动总结主要有两点采用了通用反向瓶颈(UIB,也就是本文利用的结构)和针对移动加速器优化的Mobile MQA注意力模块(一种全新的注意力机制)。我将其用于C2f的二次创新在V8n上参数量为220W(下降约一百万),计算量为6.2GFLOPs,非常适用于想要轻量化网络模型的读者来使用,同时本文结构为本专栏独家创新。
2024-11-15 01:44:31
1381
1
原创 YOLOv11改进 | 主干/Backbone篇 | 双主干思想给yolov11增加辅助特征提取主干(全网独家创新)
本文给大家带来的最新改进机制是结合目前SOTAYOLOv9的思想利用双主干网络来改进YOLOv11(本专栏目前发布以来改进最大的内容,同时本文内容为我个人一手整理全网独家首发 | 就连V9官方不支持的模型宽度和深度修改我都均已提供,本文内容支持YOLOv11全系列模型从n到x均可使用),本文的内容超级适合想要发表论文的读者创新性不够,工作量不够的,本文的改进在感官上给人就有一种工作量多和创新点十足的感觉,同时本专栏内容以后均采用NEU-DET数据集进行对比实验模型(避免大家质疑数据集质量的问题),本文内容为
2024-11-15 01:19:35
1478
1
原创 YOLOv11改进 | 细节创新篇 | iAFF迭代注意力特征融合改进C3k2助力yolov11有效涨点
本文给大家带来的最新改进机制是iAFF(迭代注意力特征融合),其主要思想是通过改善特征融合过程来提高检测精度。传统的特征融合方法如加法或串联简单,未考虑到特定对象的融合适用性。iAFF通过引入多尺度通道注意力模块(我个人觉得这个改进机制就算融合了注意力机制的求和操作),更好地整合不同尺度和语义不一致的特征。该方法属于细节上的改进并不影响任何其它的模块,非常适合大家进行融合改进,单独使用也是有一定的涨点效果。欢迎大家订阅我的专栏一起学习YOLO!
2024-11-15 00:36:40
1134
原创 YOLOv11改进 | Neck篇 | 结合SDI和ASF-YOLO形成全新的特征融合网络网络(分割高效涨点,二次创新)
本文给大家带来的改进机制是利用多层次特征融合模块(SDI)配上经典的加权双向特征金字塔网络ASF-YOLO的Neck形成一种全新的Neck网络结构,从而达到二次创新的效果,其中(SDI)模块的主要思想是通过整合编码器生成的层级特征图来增强图像中的语义信息和细节信息。ASF-YOLO(发布于2023.12月份的最新机制)其是特别设计用于细胞实例分割。这个模型通过结合空间和尺度特征,提高了在处理细胞图像时的准确性和速度。在实验中,ASF-YOLO。
2024-11-13 23:58:29
1533
原创 YOLOv11改进 | Neck篇 | SDI结合BiFPN全新的特征融合网络(全网独家创新)
本文给大家带来的最新改进机制是利用多层次特征融合模块(SDI)配上经典的加权双向特征金字塔网络Bi-FPN形成一种全新的Neck网络结构,从而达到二次创新的效果,其中(SDI)模块的主要思想是通过整合编码器生成的层级特征图来增强图像中的语义信息和细节信息。Bi-FPN无需过多介绍其作为经典的特征金字塔网络其效果一直以来都是非常的不错,其中Bi-FPN的劣势主要是时间过于久远,但是SDI。
2024-11-13 23:58:21
1543
原创 YOLOv11改进 | 进阶实战篇 | 利用辅助超推理算法SAHI让小目标无所谓遁形(支持视频和图片推理)
本文给大家带来的最新改进是进阶实战篇,利用辅助超推理算法SAHI进行推理,同时官方提供的版本中支持视频,我将其进行改造后不仅支持视频同时支持图片的推理方式,SAHI主要的推理场景是针对于小目标检测(检测物体较大的不适用,因为会将一些大的物体切割开来从而导致误检),检测效果非常的好对于小目标检测,尤其是无人机航拍的图片检测或者远距离拍摄的图片,本文中附代码+详细的参数讲解并有教程示例!YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备目录一、本文介绍二、论文的提出三、项目完整代码。
2024-11-13 23:58:08
1621
原创 YOLOv11改进 | 进阶实战篇 | 利用YOLOv11进行过线统计(可用于人 、车过线统计)
Hello,各位读者,最近会给大家发一些进阶实战的讲解,如何利用YOLOv11现有的一些功能进行一些实战, 让我们不仅会改进YOLOv11,也能够利用YOLOv11去做一些简单的小工作,后面我也会将这些功能利用PyQt或者是pyside2做一些小的界面给大家使用。在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进(大家拿到之后添加另外一个改进机制在你的数据集上实现涨点即可撰写论文),还有各种前沿顶会改进机制 |,更有包含我所有附赠的文件。
2024-11-13 23:58:00
842
原创 YOLOv11改进 | 进阶实战篇 | 利用YOLOv11进行视频划定区域目标统计计数
Hello,各位读者最近会给大家发一些进阶实战的讲解,如何利用YOLOv11现有的一些功能进行一些实战, 让我们不仅会改进YOLOv11,也能够利用YOLOv11去做一些简单的小工作,后面我也会将这些功能利用PyQt或者是pyside2做一些小的界面给大家使用。
2024-11-13 23:57:52
963
原创 YOLOv11改进 | 模型知识蒸馏篇 | 利用模型蒸馏改进YOLOv11进行无损涨点 | CWDLoss(在线蒸馏 + 离线蒸馏)
这篇文章给大家带来最新改进的是模型的蒸馏利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv11的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了!欢迎大家订阅我的专栏一起学习YOLO!
2024-11-13 01:02:13
1075
2
原创 YOLOv11改进 | 模型知识蒸馏篇 | 利用模型蒸馏改进YOLOv11进行无损涨点 | MGDLoss(在线蒸馏 + 离线蒸馏)
这篇文章给大家带来最新改进的是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv11的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了!欢迎大家订阅我的专栏一起学习YOLO!
2024-11-13 01:01:30
801
原创 YOLOv11改进 | 模型知识蒸馏篇 | 利用模型蒸馏改进YOLOv11进行无损涨点 | MimicLoss(在线蒸馏 + 离线蒸馏)
这篇文章给大家带来的最新改进是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv11的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了!欢迎大家订阅我的专栏一起学习YOLO!
2024-11-13 01:01:13
871
原创 YOLOv11改进 | 模型知识蒸馏篇 | 利用模型蒸馏改进YOLOv11进行无损涨点 | 在线蒸馏 (附代码 + 完整文件 + 解析教程)
这篇文章给大家带来的最新改进是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv11的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了,本文内容为在线蒸馏教程,之前的文章为离线蒸馏!
2024-11-13 01:00:54
1006
原创 YOLOv11改进 | 模型知识蒸馏篇 | 利用模型蒸馏改进YOLOv11进行无损涨点 | 离线蒸馏(附代码 + 完整文件 + 解析教程)
这篇文章给大家带来的最新改进是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv8的项目文件为例,进行详细的修改教程,文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏真正的无损涨点,蒸馏你只看这一篇文章就足够了!欢迎大家订阅我的专栏一起学习YOLO!
2024-11-13 01:00:12
1310
原创 YOLOv11改进 | Neck篇 | 2024最新TPAMI机制FreqFusion二次创新BiFPN(全网独家创新)
本文给大家带来的最新改进机制是利用2024-TPAMI最新机制FreqFusion二次创新BiFPN《Frequency-aware Feature Fusion for Dense Image Prediction》这篇文章的主要贡献是提出了一种新的特征融合方法(FreqFusion),旨在解决密集图像预测任务中的类别内不一致性和边界位移问题。本文将其和BiFPN进行结合实现二次创新BiFPN机制,相比于原始的YOLOv11本文的内容可以达到一定的轻量化,本文的内容在作者的多类别数据集上实现了涨点。
2024-11-10 02:21:52
1468
4
原创 YOLOv11改进 | Neck篇 | 2024最新MFDS-DETR的HS-FPN改进yolov11特征融合层(全网独家首发)
本文给大家带来的最新改进机制是最近这几天发布的改进机制MFDS-DETR提出的一种HS-FPN结构,其是一种为白细胞检测设计的网络结构,主要用于解决白细胞数据集中的多尺度挑战。特征选择模块和特征融合模块在本文的下面均会有讲解,这个结构是非常新颖的。其可以起到特征选择的作用,非常适合轻量化的读者来使用,其存在二次创新和多次创新的机会,在近期内我会对其进行更加轻量化和精度更高的二次创新,利用该结构参数量下降至197W,计算量降低至7.0GFLOPs,本文结构为我独家复现,全网目前无第二份大家可以抓紧使用。
2024-11-10 01:46:15
1214
原创 YOLOv11改进 | Neck篇 | 利用ASF-YOLO改进yolov11特征融合层助力yolov11有效涨点(适用于实例分割和目标检测)
本文给大家带来的最新改进机制是ASF-YOLO,其是特别设计用于细胞实例分割。这个模型通过结合空间和尺度特征,提高了在处理细胞图像时的准确性和速度。在实验中,ASF-YOLO在2018年数据科学竞赛数据集上取得了卓越的分割准确性和速度,达到了0.91的box mAP(平均精度),0.887的mask mAP,以及47.3FPS的推理速度,效果非常的好,这个结构本来是用于分割的,我将其移植到了目标检测的模型上,所以其可以适用于分割和目标检测,
2024-11-10 00:58:08
949
原创 YOLOv11改进 | Neck篇 | 利用Gold-YOLO改进yolov11对小目标检测能力(全网独家首发)
本文给大家带来的最新改进机制是Gold-YOLO利用其Neck改进v8的Neck,GoLd-YOLO引入了一种新的机制——信息聚集-分发。这个机制通过全局融合不同层次的特征并将融合后的全局信息注入到各个层级中,从而实现更高效的信息交互和融合。这种方法增强了模型的颈部(neck)信息融合能力(有点类似于长颈鹿的脖子该Neck部分很长)同时也没有显著增加延迟,提高了模型在检测不同大小物体时的性能,同时欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。
2024-11-10 00:36:26
1375
2
原创 YOLOv11改进 | 独家创新篇 | 结合iRMB和EMA形成全新的iEMA机制(全网独家创新,教你如何二次创新)
本文给大家带来的最新改进机制是二次创新的机制,二次创新是我们发表论文中关键的一环,为什么这么说,从去年的三月份开始对于图像领域的论文发表其实是变难的了,在那之前大家可能搭搭积木的情况下就可以简单的发表一篇论文,但是从去年开始单纯的搭积木其实发表论文变得越来越难,所以这个时候就需要二次创新,以此来迷惑审稿人,彰显大家的工作量,所以二次创新是非常重要的一点,因为二次创新出来的模块其实基本上就可以算作一个全新的模块了,本文内容经过YOLOv8专栏很多读者反应效果很好。欢迎大家订阅我的专栏一起学习YOLO!
2024-11-09 02:57:07
1310
1
原创 YOLOv11改进 | Conv/卷积篇 | 2024最新高效的超分辨率特征提取模块MAB二次创新C3k2助力yolov11有效涨点(全网独家创新)
本文给大家带来的最新改进机制是Multi-scaleAttentionNetworkforSingleImageSuper-Resolution提出的MAB模块,其旨在提升单图像超分辨率(SISR)任务中的特征提取能力。与传统的RCAN(ResidualChannelAttentionNetwork)风格模块不同,MAB结合了MetaFormer结构,使得特征提取过程更具有效率和适应性。MAB包括两大核心模块:多尺度大核注意力(MLKA)和门控空间注意力单元(GSAU)。
2024-11-09 02:51:17
1131
4
全新的SOTA模型YOLOv9
2024-02-22
全新的SOTA模型YOLOv9原文 + 论文阅读笔记
2024-02-22
时间序列预测实战(十九)魔改Informer模型进行滚动长期预测(科研版本,结果可视化)
2023-12-20
【Google2023】利用TiDE进行长期预测实战(时间序列密集编码器)
2023-12-04
Transformer模型实现长期预测并可视化结果(附代码+数据集+原理介绍)
2023-11-12
FNet模型实现滚动长期预测并可视化结果,定制化数据集进行预测
2023-11-11
DLinear模型实现滚动长期预测并可视化预测结果
2023-11-11
SCINet时间序列预测实战(附代码+数据集+原理介绍)
2023-11-11
Informer模型实战案例(代码+数据集+参数讲解)
2023-11-10
TPA-LSTM时间序列预测实战案例
2023-11-05
修改了DSCN动态蛇形卷积的ultralytics文件
2023-11-03
BiFormer: Vision Transformer with Bi-Level Routing Attention论文
2023-11-02
动态蛇形卷积(Dynamic Snake Convolution)
2023-10-31
时间序列预测模型实战案例深度学习华为MTS-Mixers模型
2023-10-27
机器学习ARIMA时间序列预测模型实战案例
2023-10-27
时间序列预测模型实战案例基于双向LSTM横向搭配合单向LSTM进行回归问题的解决
2023-09-27
时间序列预测模型实战案例(Xgboost)(Python)(机器学习)包括时间序列预测和时间序列分类,点击即可运行!
2023-09-25
大家一天学习多少个小时?
2024-01-08
TA创建的收藏夹 TA关注的收藏夹
TA关注的人