1.结构函数法
1.1
由于传统暗像元法只在植被覆盖度高的区域有着较好的 AOD 反演结果,但是在许多反射能力较强的地方,例如在高纬度地区冬季的 AOD 反演结果较差。研究学者为了解决这个问题,提出一种方法叫做结构函数法,该方法是主要通过大气透过率和地表反射率来获取 AOD 值.结构函数法的前提是需要一组遥感影像,且有一张为高分辨率的遥感影像,首先采用一定的方法先估算出高分辨率遥感影像的 AOD 值,与此同时通过对遥感影像的地表反射率分析计算出地表反射率的分布情况,再利用该遥感影像计算得到一个结构函数,最后通过结构函数获取到其他数据的 AOD 值。根据该方法的理论可以知道,地表反射能力的大小对其的影响较弱,所以在冬季或者少雨地方有着较好的反演精度。但是该方法必须有一张高分辨率,并且清晰度较高的遥感影像,在大雾或者云层较厚情况下我们难以得到一张清晰度较高的遥感影像,
Tanre(1988)提出了利用清洁大气和浑浊大气两种天气下相邻像元的对比度反演气溶胶的结构函数法,并成功用于AVHRR数据反演城市地区的气溶胶光学厚度,不受地表反射率的制约,但该算法尚不稳定,还没有用于全球的气溶胶监测。
2. 多角度算法
多角度算法根据通道和传感器个数,又可以分为单通道多角度、多通道多角度以及多星构造多角度。Flowerdew(1996)利用ATSR-2双角度观测的优势,提出了一个不需要浓密植被支持的双角度算法(ATSR-DV)反演陆地上空的气溶胶光学厚度,也不依赖不变的地物和朗伯体的假设,仅基于地表反射率随波长变化最小这一近似条件,并利用考虑双向反射的辐射传输模型进行了模拟,在各种冠型下均具有鲁棒性。
3. 暗像元法
-
3.1 起源
Kaufman 和Sandra 于1988年提利用大多数陆面在红(0.6-0.68um)、蓝(0.40-0.48um)波段反射率低的特性,以植被指数NDVI或中红外通道(2.12um)反射率将森林判识为暗像元,并假定这些暗像元红、蓝通道的地表反射率,用于反演气溶胶光学厚度.最初确定暗像元是利用植被指数和近红外通道表观反射率加以识别的,使得这种方法只能应用于预先知道有稠密植被的地区,为了使方法的适用性更好,Kaufman和Holben用中红外波段(2.12um\3.18um)来寻找暗像元.
-
3.2 发展
Kaufman等人通过实验和考虑多种地表覆盖,拟合得到红(0.66um)和蓝(0.47um)和中红外通道的地表反射率关系:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SGuF7UUf-1663155389161)(C:\Users\lfh98\Desktop\1651935198(1)].jpg)
暗像元方法可以用于反演中红外通道表观反射率小于0.4的区域;对于非星下点,考虑了太阳和卫星几何参数,暗像元法可以扩展到中红外通道表观反射率小于[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-O8qU35G9-1663155389164)(C:\Users\lfh98\Desktop\微信图片_20220509205420.png)]的地区(其中μ为卫星天顶角的余弦,,μ0为太阳天顶角的余弦。
-
算法描述:
假设1)图像中至少有一个被深色植被完全覆盖的比例,算法将确定这个比例的最佳标准。2)这些密集的黑暗植被的光谱波段的表面反射算法是已知的(例如,蓝色和红色部分光谱我们可以假设p=0·02±0·01和光谱的绿色部分p=0·03±0·0,)),3)气溶胶散射相位函数和单散射反照率是已知的。4这个表面可以被认为是兰伯特式的(关于这个假设的讨论见李和考夫曼,1986年)。在大气校正中兰伯表面的假设假设漫射光被与太阳直射光相同的反射率反射。
-
算法步骤:
-
根据LOWTRAN 6模型估计该地区气体吸收
-
通过屏蔽具有高波长独立反射率或低红外辐射温度的像素来去除多云区域
-
根据该区域的气候学或任何其他信息,估计气溶胶单散射相位函数§、单单散射反照率(wo)和气溶胶在表面以上的高度
-
如果该地区有大量的气溶胶负荷,通过从清晰和模糊条件下卫星图像的亮度差异推导气溶胶特征来更新
-
生成作为气溶胶光学厚度τa和表面反射率的函数(f,p),太阳方向和观测方向以及局部气溶胶特征(相函数P和单散射反照率w)的查找表。辐射在这里由Dave和Gazdag(1970)的辐射传输代码计算。
-
通过从图像中选择 植被指数最高的部分,并从该部分中选择福亮度最低的部分,从而确定深色植被。
-
气溶胶光学厚度(fa)计算的每个像素被密集的黑暗植被覆盖。光学厚度是由对每个像素测定的福亮度L和每个波段的假定反射率构成的函数L(f,p)插值得到的。
-
通过插值和平滑测量值,生成一个map
τ a ( λ , x , y ) \tau_a(\lambda,x,y) τa(λ,x,y)
τa计算:-
对于给定光厚τ的像素,选择一个大小为2n+1的框,使其位于框中央,从n=1开始,逐层递加
-
计算框中可获得的τ的平均值
-
如果在步骤2的平均中可用的τa值小于三个,则增加n的值,使n——>2n,然后进入步骤1。
-
对要获得τa的所有波段都执行前三步
-
对于每个像素,计算由下式定义的斜率 v[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qw4lT15Z-1663155389170)(C:\Users\lfh98\Desktop\微信图片_20220510000339.png)]V在整个子区域的平均值用于插值和推断其他光谱波段的τa
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-k6I32q4g-1663155389174)(C:\Users\lfh98\Desktop\微信图片_20220510000630.png)]
(如果气溶胶光学厚度 Ta 仅在一个波长中得出,则指数 v 无法从卫星数据中确定,而必须从获取图像的季节所在地区的气候学中找到)
-
-
-
大气校正
-
均匀表面大气校正(地表反射率)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-haH1PRYl-1663155389175)(C:\Users\lfh98\Desktop\微信图片_20220510001048.png)]
-
非均匀曲面
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Gzf0B6rr-1663155389177)(C:\Users\lfh98\Desktop\微信图片_20220510001153.png)]
-
新方法V5.2算法
- 起源:
Robert C.Levy 等人2006年提出,该方法对光学厚度的反演误差范围是[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-f5RmOTnV-1663155389181)(C:\Users\lfh98\Desktop\微信图片_20220509212026.png)]
MODIS反演值和AERONET的观测值满足关系:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SX7fmkKd-1663155389182)(C:\Users\lfh98\Desktop\微信图片_20220509212241.png)]相关系数为0.09.
- 改进
该方法可以针对光学厚度较小的区域进行反演,使得反演结果更加合理,认为地表反射率与气溶胶无关,但是与几何条件有关,理论上可以利用卫星观测的可见光和近红外通道的反射率比值对表面反射率进行参数化,使其成为植被指数和散射角的函数。新的方法对植被指数加以考虑,认为可见光与中红外通道的表观反射率比值
的变化与植被状况有一定关系。基于这个因素,重新定义了一个植被指数,具体的表达式为:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-t3cny4B0-1663155389184)(C:\Users\lfh98\Desktop\微信图片_20220509212724.png)]
该指数大于0.6表示该地区植被良好,小于0.2表示该地区植被稀疏。