矩阵的运算STL

矩阵在面向对象的例子中很常见

那我们也来看看:

 

#include <iostream>
#include <string>
#include <sstream>
#include <vector>
#include <functional>
#include <algorithm>

using namespace std;

template<class T>
class MyMatrix
{
public:
	vector<vector<T> >matrix;
public:
	MyMatrix(int m,int n) : matrix(m,vector<T>(n))
	{
	}

	MyMatrix(string s,int m,int n):matrix(m,vector<T>(n))
	{
		istringstream out(s);
		char ch;
		for(int i = 0 ; i < m ;i ++)
		{
			for(int j = 0 ; j < n ; j ++)
			{
				out >> matrix[i][j] ;
			}
			out >> ch;
		}
	}

	int GetMatrixRows()
	{
		return matrix.size();
	}

	int GetMatrixCols()
	{
		return matrix[0].size();
	}

	MyMatrix<T> Add(MyMatrix<T> &m)
	{
		int row = GetMatrixRows();
		int col = GetMatrixCols();
		int row2 = m.GetMatrixRows();
		int col2 = m.GetMatrixCols();
		if(row != row2 || col != col2)
			return MyMatrix<T> (0,0);

		MyMatrix<T> tmp(row,col);
		for(int i = 0 ; i < row ;i ++)
		{
			transform(matrix[i].begin(),matrix[i].end(),m.maxtrix[i].begin(),tmp.maxtrix[i].begin(),
				plus<T>());
		}

		return tmp;
	}

	MyMatrix<T> Minux(MyMatrix<T> &m)
	{
		int row = GetMatrixRows();
		int col = GetMatrixCols();
		int row2 = m.GetMatrixRows();
		int col2 = m.GetMatrixCols();
		if(row != row2 || col != col2)
			return MyMatrix<T>(0,0);

		MyMatrix<T> tmp(row,col);
		for(int i = 0 ; i < row ;i ++)
		{
			transform(matrix[i].begin(),matrix[i].end(),m.maxtrix[i].begin(),tmp.maxtrix[i].begin(),
				minus<T>());
		}

		return tmp;
	}

	MyMatrix<T> Multiply(MyMatrix<T> &m)
	{
		int row = GetMatrixRows();
		int col = GetMatrixCols();
		int row2 = m.GetMatrixRows();
		int col2 = m.GetMatrixCols();
		if(col != row2)
			return MyMatrix(0,0);

		MyMatrix<T> tmp(row,col2);
		for(int i = 0 ; i < row ;i ++)
		{
			for(int j = 0 ; j < col2; j ++)
			{
				tmp.matrix[i][j] = 0;
				for(int k = 0 ;k < col; k ++)
					tmp.matrix[i][j] += matrix[i][k] * m.matrix[k][j];
			}
		}

		return tmp;
	}

	bool Success()
	{
		return (matrix.size() == 0? false : true);
	}

	void Show(ostream &os)
	{
		int m = matrix.size();
		int n = matrix[0].size();

		for(int  i = 0; i < m ;i ++)
		{
			copy(matrix[i].begin(),matrix[i].end(),ostream_iterator<T>(os,"\t"));
			cout << endl;
		}
	}
};


int main()
{
	string s = "1 2 3,4 5 6,7 8 9";
	string s2 = "1 2 3 4 5 6 7,5 6 7 8 9 10 11,9 10 11 12 13 14 15";
	MyMatrix<int> m1(s,3,3);
	MyMatrix<int> m2(s2,3,7);

	cout << "Matrix m1: " << endl;
	m1.Show(cout);
	cout << "Matrix m2: " << endl;
	m2.Show(cout);

	MyMatrix<int> m3 = m1.Multiply(m2);
	cout << "m1 * m2 : " << endl;
	if(m3.Success())
	{
		m3.Show(cout);
	}
	else
	{
		cout << "can't satisfy" << endl;
	}

	return 0;
}


 

程序简单名了,不解释了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值