spark概览

roadmap:

http://blog.csdn.net/u014729236/article/details/45364753


process:

http://blog.csdn.net/kongshuchen/article/details/52036340


http://blog.csdn.net/u014729236/article/details/45364753



work元素层级:

job

      stage

      TaskSet

             Task

同级表示1-1 ,不同级表示1-n


Task

    DAG图拆分为Stage <-> TaskSet


    位置 (怎么决定放哪?

    process_local    -> cache

    node_local    ->   node内数据(硬盘)

    rack_local  -> 机架

    any


    类型

     shuffleMapTask

            返回MapStatus,作为下一个stage的输入数据

     resultTask    最后一个stage对应的task,collect

           如果结果小,返回DirectTaskResult

           否则,将结果序列化放到blockManager,将block id 返回


持久化层



执行过程:

action-> Runjob->(Driver-->DAG)->DAG schedule analyse->
建立stage,从action往前构建DAG 图->
遇到shuffle,构建新的stage->
新的stage次序: stagen stagen-1 ...  stage1 到头然后按这个次序顺序执行,一个有shuffle的task至少有2个stage

然后

DAG schedule ->(TaskSet)-> 提交一个stage(TeaskSet)给TaskScheduler<->SparkContext -> 
生成TaskSetManager 管理 stage,分拆stage成小task提交给executorBackend(默认提交4次防止失败) ->

各个workers 运行->

运行完成 , 从TaskManager删除

将运行结果加到TaskResultGetter


TaskSchedule

spark-cluster-TaskScheduler

yarn-cluster-YarnClusterScheduler

yarn-client-YarnClientClusterScheduler


struggle机制

当1%的任务还没运行完时,在另一个node上重新运行此任务

cache
执行新任务时,一样回溯构建transformation tree 直到回溯到已经缓存的块为止然后顺序执行
一般会把cache放在进程execute的那台机器上



spark 程序层的模型

×Driver        

          SparkConf

          SparkContext

           close

×input

×Transformation

×Action RDD

×persist or cache

×共享变量

       broadcast variable

       累加器


Spark shell

系统自动初始化SparkContext


并行化scala

  var rdd1 = sc.Parallelize(Array(1,2,3))  -> 3 个 executor

  var rdd1 = sc.Parallelize(Array(1,2,3) , 2-> 2个executor


text

     textFile("")    "/directory"  "/directory/*.gz"  "/directory/*.txt"

sequence

hadoop InputFormat







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值