roadmap:
http://blog.csdn.net/u014729236/article/details/45364753
process:
http://blog.csdn.net/kongshuchen/article/details/52036340
http://blog.csdn.net/u014729236/article/details/45364753
work元素层级:
job
stage
TaskSet
Task
同级表示1-1 ,不同级表示1-n
Task
DAG图拆分为Stage <-> TaskSet
位置 (怎么决定放哪?)
process_local -> cache
node_local -> node内数据(硬盘)
rack_local -> 机架
any
类型
shuffleMapTask
返回MapStatus,作为下一个stage的输入数据
resultTask 最后一个stage对应的task,collect
如果结果小,返回DirectTaskResult
否则,将结果序列化放到blockManager,将block id 返回
持久化层
执行过程:
action-> Runjob->(Driver-->DAG)->DAG schedule analyse->
建立stage,从action往前构建DAG 图->
遇到shuffle,构建新的stage->
新的stage次序: stagen stagen-1 ... stage1 到头然后按这个次序顺序执行,一个有shuffle的task至少有2个stage
然后
DAG schedule ->(TaskSet)-> 提交一个stage(TeaskSet)给TaskScheduler<->SparkContext ->
生成TaskSetManager 管理 stage,分拆stage成小task提交给executorBackend(默认提交4次防止失败) ->
各个workers 运行->
运行完成 , 从TaskManager删除
将运行结果加到TaskResultGetter
TaskSchedule
spark-cluster-TaskScheduler
yarn-cluster-YarnClusterScheduler
yarn-client-YarnClientClusterScheduler
struggle机制
当1%的任务还没运行完时,在另一个node上重新运行此任务
cache
执行新任务时,一样回溯构建transformation tree 直到回溯到已经缓存的块为止然后顺序执行
一般会把cache放在进程execute的那台机器上
spark 程序层的模型
×Driver
SparkConf
SparkContext
close
×input
×Transformation
×Action RDD
×persist or cache
×共享变量
broadcast variable
累加器
Spark shell
系统自动初始化SparkContext
并行化scala
var rdd1 = sc.Parallelize(Array(1,2,3)) -> 3 个 executor
var rdd1 = sc.Parallelize(Array(1,2,3) , 2) -> 2个executor
text
textFile("") "/directory" "/directory/*.gz" "/directory/*.txt"
sequence
hadoop InputFormat