数据领域60名词全解:权威释义一网打尽

前言:数字经济时代的必备指南

随着数字经济的蓬勃发展,数据已成为推动社会经济发展的关键生产要素。为了规范数据的使用和管理,国家数据局发布了《数据领域常用名词解释》。这份文件为数据的合法使用、交易和管理提供了清晰的框架,促进了数据资源的高效流通与合理利用。本文将带您全面解读这些术语,助您轻松掌握数据领域的核心概念。

发布时间:两批释义,逐步推进

  • 第一批释义:2024年12月30日,国家数据局发布了《数据领域常用名词解释(第一批)》,涵盖了数据、数据资产、数据交易、数据湖、区块链等40个核心名词。
  • 第二批释义:2025年1月23日,《数据领域常用名词解释(第二批)》征求意见稿发布,新增了数据产权、数据使用权、企业数据等20个名词,进一步完善了数据领域的概念体系。

名词解释:全面覆盖数据领域

一、数据基础概念:从基础到核心

  1. 数据:是指任何以电子或其他方式对信息的记录。数据在不同视角下被称为原始数据、衍生数据、数据资源、数据产品和服务、数据资产、数据要素等。
  2. 原始数据:是指初次产生或源头收集的、未经加工处理的数据。
  3. 数据资源:是指具有价值创造潜力的数据的总称,通常指以电子化形式记录和保存、可机器读取、可供社会化再利用的数据集合。
  4. 数据要素:是指投入到生产经营活动、参与价值创造的数据资源。
  5. 数据产品和服务:是指基于数据加工形成的,可满足特定需求的数据加工品和数据服务。
  6. 数据资产:是指特定主体合法拥有或者控制的,能进行货币计量的,且能带来经济利益或社会效益的数据资源。
  7. 数据要素市场化配置:是指通过市场机制来配置数据这一新型生产要素,旨在建立一个更加开放、安全和高效的数据流通环境,不断释放数据要素价值。

二、数据处理:从收集到利用

  1. 数据处理:包括数据的收集、存储、使用、加工、传输、提供、公开等。
  2. 数据处理者:是指在数据处理活动中自主决定处理目的和处理方式的个人或者组织。
  3. 受托数据处理者:是指接受他人委托处理数据的个人或者组织。
  4. 数据流通:是指数据在不同主体之间流动的过程,包括数据开放、共享、交易、交换等。
  5. 数据交易:是指数据供方和需方之间进行的,以特定形态数据为标的,以货币或者其他等价物作为对价的交易行为。
  6. 公共数据:是指各级党政机关、企事业单位依法履职或提供公共服务过程中产生的数据。
  7. 数据安全:是指通过采取必要措施,确保数据处于有效保护和合法利用的状态,以及具备保障持续安全状态的能力。
  8. 数据治理:是指提升数据的质量、安全、合规性,推动数据有效利用的过程,包含组织数据治理、行业数据治理、社会数据治理等。

三、数据产权:谁拥有,谁负责

  1. 数据产权:是指权利人对特定数据享有的财产性权利,包括数据持有权、数据使用权、数据经营权等。
  2. 数据产权登记:是指数据产权登记机构按照统一的规则对数据的来源、描述、合规等情况进行审核并记载,并出具登记凭证的行为。
  3. 数据持有权:是指权利人自行持有或委托他人代为持有合法获取的数据的权利,旨在防范他人非法违规窃取、篡改、泄露或者破坏持有权人持有的数据。
  4. 数据使用权:是指权利人通过加工、聚合、分析等方式,将数据用于优化生产经营、形成衍生数据等的权利。一般来说,使用权是权利人在不对外提供数据的前提下,将数据用于内部使用的权利。
  5. 数据经营权:是指权利人通过转让、许可、出资或者设立担保等有偿或无偿的方式对外提供数据的权利。
  6. 衍生数据:是指数据处理者对其享有使用权的数据,在保护各方合法权益前提下,通过利用专业知识加工、建模分析、关键信息提取等方式实现数据内容、形式、结构等实质改变,从而显著提升数据价值,形成的数据。
  7. 企业数据:是指企业在生产经营过程中形成或合法获取、持有的数据。

四、数据交易:数据也能买卖

  1. 数据交易机构:是指为数据供需多方提供数据交易服务的专业机构。
  2. 数据场内交易:是指数据供需方通过数据交易机构达成数据交易的行为。
  3. 数据场外交易:是指数据供需方不通过数据交易机构达成数据交易的行为。
  4. 数据撮合:是指帮助数据供需方达成数据交易的行为。
  5. 第三方专业服务机构:为促进数据交易活动合规高效开展,提供数据集成、数据经纪、合规认证、安全审计、数据公证、数据保险、数据托管、资产评估、争议仲裁、风险评估、人才培训等第三方服务的专业化组织。

五、数据产业:新兴领域,蓬勃发展

  1. 数据产业:是指利用现代信息技术对数据资源进行产品或服务开发,并推动其流通应用所形成的新兴产业,包括数据采集汇聚、计算存储、流通交易、开发利用、安全治理和数据基础设施建设等。
  2. 数据标注产业:是指对数据进行筛选、清洗、分类、注释、标记和质量检验等加工处理的新兴产业。
  3. 数字产业集群:是指以数据要素驱动、数字技术赋能、数字平台支撑、产业融通发展、集群生态共建为主要特征的产业组织新形态。
  4. 可信数据空间:是指基于共识规则,联结多方主体,实现数据资源共享共用的一种数据流通利用基础设施,是数据要素价值共创的应用生态,是支撑构建全国一体化数据市场的重要载体。可信数据空间须具备数据可信管控、资源交互、价值共创三类核心能力。

六、数据基础设施:数据流通的底层支撑

  1. 数据基础设施:是从数据要素价值释放的角度出发,面向社会提供数据采集、汇聚、传输、加工、流通、利用、运营、安全服务的一类新型基础设施,是集成硬件、软件、模型算法、标准规范、机制设计等在内的有机整体。
  2. 数据使用控制:是指在数据的传输、存储、使用和销毁环节采用技术手段进行控制,如通过智能合约技术,将数据权益主体的数据使用控制意愿转化为可机读处理的智能合约条款,解决数据可控的前置性问题,实现对数据资产使用的时间、地点、主体、行为和客体等因素的控制。
  3. 算力池化:是指通过算力虚拟化和应用容器化等关键技术,对各类异构、异地的算力资源与设备进行统一注册和管理,实现对大规模集群内计算资源的按需申请与使用。
  4. 算力调度:本质是计算任务调度,是基于用户业务需求匹配算力资源,将业务、数据、应用调度至匹配的算力资源池进行计算,实现计算资源利用效率最大化。

七、数据结构:数据的组织形式

  1. 元数据:是定义和描述特定数据的数据,它提供了关于数据的结构、特征和关系的信息,有助于组织、查找、理解、管理数据。
  2. 结构化数据:是指一种数据表示形式,按此种形式,由数据元素汇集而成的每个记录的结构都是一致的,并且可以使用关系模型予以有效描述。
  3. 半结构化数据:是指不符合关系型数据库或其他数据表的形式关联起来的数据模型结构,但包含相关标记,用来分隔语义元素以及对记录和字段进行分层的一种数据化结构形式。
  4. 非结构化数据:是指不具有预定义模型或未以预定义方式组织的数据。

八、数字经济:数据驱动新未来

  1. 数字产业化:是指移动通信、人工智能等数字技术向数字产品、数字服务转化,数据向资源、要素转化,形成数字新产业、新业态、新模式的过程。
  2. 产业数字化:是指传统的农业、工业、服务业等产业通过应用数字技术、采集融合数据、挖掘数据资源价值,提升业务运行效率,降低生产经营成本,进而重构思维认知,整体性重塑组织管理模式,系统性变革生产运营流程,不断提升全要素生产率的过程。
  3. 数字经济高质量发展:是指围绕加快培育新质生产力,以数据要素市场化配置改革为主线,通过协同完善数据基础制度和数字基础设施、全面推进数字技术和实体经济深度融合、持续提升数字经济治理能力和国际合作水平,实现做强做优做大目标的数字经济发展新阶段。
  4. 数字消费:是指数字技术、应用支撑形成的消费活动和消费方式,既包括对数智化技术、产品和服务的消费,也包括消费内容、消费渠道、消费环境的数字化与智能化,还包括线上线下深度融合的消费新模式。
  5. 产业互联网:是指利用数字技术、数据要素推动全产业链数据融通,赋能产业数字化、网络化、智能化发展,推动业务流程、组织架构、生产方式等重组变革,实现产业链上下游协同转型、线上线下融合发展、全产业降本增效与高质量发展,进而形成新的产业协作、资源配置和价值创造体系。

九、城市数字化转型:智慧城市的未来

  1. 城市全域数字化转型:是指城市以全面深化数据融通和开发利用为主线,综合利用数字技术和制度创新工具,实现技术架构重塑、城市管理流程变革和产城深度融合,促进数字化转型全领域增效、支撑能力全方位增强、转型生态全过程优化的城市高质量发展新模式。
  2. “东数西算”工程:是把东部地区经济活动产生的数据和需求放到西部地区计算和处理,对数据中心在布局、网络、电力、能耗、算力、数据等方面进行统筹规划的重大工程,比如人工智能模型训练推理、机器学习等业务场景,可以通过“东数西算”的方式让东部业务向西部风光水电丰富的区域迁移,实现东西部协同发展。加快推动“东数西算”工程建设,将有效激发数据要素创新活力,加速数字产业化和产业数字化进程,催生新技术、新产业、新业态、新模式,支撑经济高质量发展。
  3. 高速数据网:是指面向数据流通利用场景,依托网络虚拟化、软件定义网络(SDN)等技术,提供弹性带宽、安全可靠、传输高效的数据传输服务。
  4. 全国一体化算力网:是指以信息网络技术为载体,促进全国范围内各类算力资源高比例、大规模一体化调度运营的数字基础设施。作为“东数西算”工程的2.0版本,具有集约化、一体化、协同化、价值化四个典型特征。

十、数据分析:从数据中挖掘价值

  1. 数据分析:是指通过特定的技术和方法,对数据进行整理、研究、推理和概括总结,从数据中提取有用信息、发现规律、形成结论的过程。
  2. 数据挖掘:是数据分析的一种手段,是通过统计分析、机器学习、模式识别、专家系统等技术,挖掘出隐藏在数据中的信息或者价值的过程。
  3. 数据可视化:是指通过统计图表、图形、地图等图形化手段,将数据中包含的有用信息清晰有效地传达出来,以便于数据使用者更好地理解和分析数据。

十一、数据存储:数据的家园

  1. 数据仓库:是指在数据准备之后用于永久性存储数据的数据库。
  2. 数据湖:是指一种高度可扩展的数据存储架构,它专门用于存储大量原始数据和衍生数据,这些数据可以来自各种来源并以不同的格式存在,包括结构化、半结构化和非结构化数据。
  3. 湖仓一体:是指一种新型的开放式的存储架构,打通了数据仓库和数据湖,将数据仓库的高性能及管理能力与数据湖的灵活性融合起来,底层支持多种数据类型并存,能实现数据间的相互共享,上层可以通过统一封装的接口进行访问,可同时支持实时查询和分析。

十二、数据安全:守护数据的每一步

  1. 隐私保护计算:是指在保证数据提供方不泄露原始数据的前提下,对数据进行分析计算的一类信息技术,保障数据在产生、存储、计算、应用、销毁等数据流转全过程的各个环节中“可用不可见”。隐私保护计算的常用技术方案有安全多方计算、联邦学习、可信执行环境、密态计算等。常用的底层技术有混淆电路、不经意传输、秘密分享、同态加密等。
  2. 安全多方计算:是指在一个分布式网络中,多个参与实体各自持有秘密数据,各方希望以这些数据为输入共同完成对某函数的计算,而要求每个参与实体除计算结果、预期可公开的信息外均不能得到其他参与实体的任何输入信息。主要研究针对无可信第三方情况下,安全地进行多方协同的计算问题。
  3. 联邦学习:是指一种多个参与方在保证各自原始私有数据不出数据方定义的可信域的前提下,以保护隐私数据的方式交换中间计算结果,从而协作完成某项机器学习任务的模式。
  4. 可信执行环境:是指基于硬件级隔离及安全启动机制,为确保安全敏感应用相关数据和代码的机密性、完整性、真实性和不可否认性目标构建的一种软件运行环境。
  5. 密态计算:是指通过综合利用密码学、可信硬件和系统安全相关技术,实现计算过程数据可用不可见,计算结果能够保持密态化,以支持构建复杂组合计算,实现计算全链路保障,防止数据泄漏和滥用。
  6. 区块链:是分布式网络、加密技术、智能合约等多种技术集成的新型数据库软件,具有多中心化、共识可信、不可篡改、可追溯等特性,主要用于解决数据流通过程中的信任和安全问题。

结语:掌握数据世界的钥匙

国家数据局发布的《数据领域常用名词解释》为数据领域的规范化和标准化奠定了基础。无论是企业管理者、行业从业者,还是普通读者,理解这些名词都将帮助您更好地把握数字经济时代的机遇。数据世界的大门已经打开,让我们共同迈向未来!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值