数字逻辑
竞争冒险及其防范措施
RS触发器
离散数学
图论
- 欧拉图
- 顶点集与边集构成的二元组叫图
- 顶点集是非空集 不能没有点
- 边集可以为多重集 图也是多重图,两个 点之间有多根相同的线
- 边、边点、点点相互关联
- 自环
图的分类
- 无向图
- 简单无向图:没有自环没有多重边
- 多重无向图:有多重编
- 伪图:有自环
- 有向图
- 简单图:非平行变
- 多重图:一定存在平行边
度
度:一个点关联的边的条数叫做这个点的度,写作:d(v)=deg(v)=degG(v)
- 孤立点:d(v)=0
- 悬挂点:=1
- 奇度点
- 偶度点
- Δ(G)图的最大度,δ(G)图的最小度(体现图的连通性)
有向图的度:
入度d-,出读d+
- 握手定理:图的总度数等于边数二倍 因为人一边总是要关联两个顶点
- 推论:奇度点有偶数个
- 推论:总有两个点度数相同;即一个班里总有两个人朋友数相同
图化
数集可图化=总和为偶数+偶数个奇数
tips:数学中总有很多高大上的表述,比如是偶数等价于模二位零
一些概念
- 完全图:每个点都相连
- 二分图:类似两个阵营打比赛,一个点集分成两个点集,集合内不相连,集合间相连
- 完全二分图:两个集合间各点完全相连,有M*N条边----回路有奇数条边,不能成为二分图
- 正则图:每个点度数相同
- 零图:
- 圈图:
- 轮图:圈图加中心点
子图
点集和边集均是全集的一部分
-
完全子图:点集等于父图,边集不一定
-
同构:点集边集数量相同,拓扑结构完全相同,可形成双射(一一对应的高大上说法)