4.25上午课程重点

数字逻辑

竞争冒险及其防范措施

RS触发器

离散数学

图论

  • 欧拉图
  • 顶点集与边集构成的二元组叫图
  • 顶点集是非空集 不能没有点
  • 边集可以为多重集 图也是多重图,两个 点之间有多根相同的线
  • 边、边点、点点相互关联
  • 自环

图的分类

  • 无向图
  • 简单无向图:没有自环没有多重边
  • 多重无向图:有多重编
  • 伪图:有自环
  • 有向图
  • 简单图:非平行变
  • 多重图:一定存在平行边

度:一个点关联的边的条数叫做这个点的度,写作:d(v)=deg(v)=degG(v)

  • 孤立点:d(v)=0
  • 悬挂点:=1
  • 奇度点
  • 偶度点
  • Δ(G)图的最大度,δ(G)图的最小度(体现图的连通性)

有向图的度:
入度d-,出读d+

  • 握手定理:图的总度数等于边数二倍 因为人一边总是要关联两个顶点
  • 推论:奇度点有偶数个
  • 推论:总有两个点度数相同;即一个班里总有两个人朋友数相同

图化

数集可图化=总和为偶数+偶数个奇数
tips:数学中总有很多高大上的表述,比如是偶数等价于模二位零

一些概念

  • 完全图:每个点都相连
  • 二分图:类似两个阵营打比赛,一个点集分成两个点集,集合内不相连,集合间相连
  • 完全二分图:两个集合间各点完全相连,有M*N条边----回路有奇数条边,不能成为二分图
  • 正则图:每个点度数相同
  • 零图:
  • 圈图:
  • 轮图:圈图加中心点

子图

点集和边集均是全集的一部分

  • 完全子图:点集等于父图,边集不一定

  • 同构:点集边集数量相同,拓扑结构完全相同,可形成双射(一一对应的高大上说法)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值