C# | 上位机开发新手指南(五)校验算法——CRC

在这里插入图片描述

上位机开发新手指南(五)校验算法——CRC

前言

当我们在进行数据传输时,可能会因为信道噪声、干扰等因素导致数据出现错误,从而影响传输的可靠性和准确性。此时,我们需要一种方法来检测数据是否出现错误,并尽可能快速地发现和纠正错误。CRC(Cyclic Redundancy Check)校验算法就是一种常用的数据校验方法,它通过对数据进行处理生成校验码,从而实现对数据的完整性和准确性进行验证。

使用CRC校验的意义在于能够提高数据传输的可靠性,降低数据传输错误率,确保数据的完整性和准确性。在各个领域中,如通信、网络、存储等,CRC校验都得到了广泛的应用。通过对数据进行CRC校验,我们可以在数据传输过程中及时发现错误,并对数据进行纠错,从而保证数据的可靠传输。


CRC算法的优点与缺点

CRC算法具有精度高、计算速度快、算法简单等优点,但在校验码长度有限、无法防止恶意攻击、无法纠正错误等方面存在一定的缺点。

接下来详细描述CRC算法的优点和缺点:

优点

  1. 精度高:CRC算法能够提供较高的校验精度和安全性,能够在数据传输过程中及时发现错误,并对数据进行纠错,从而保证数据的可靠传输。
  2. 计算速度快:CRC算法的计算速度相对较快,能够在较短时间内生成校验码,适用于高速数据传输的场景。
  3. 算法简单:CRC算法的实现较为简单,只需要进行位运算和异或运算等基本运算,不需要使用复杂的加密算法。

缺点

  1. 校验码长度有限:不同版本的CRC算法的校验码长度有限,无法对所有可能的数据错误进行完美的检测和纠错。
  2. 无法防止恶意攻击:CRC算法只能检测数据是否被篡改,但无法防止恶意攻击。因此,在对于安全性要求较高的数据传输场景中,需要使用更加安全的加密算法。
  3. 无法纠正错误:CRC算法只能检测出数据是否出现错误,但无法对出现的错误进行纠正。因此,在对于数据传输要求较高的场景中,需要使用更加高级的纠错算法。

CRC算法的版本分支

CRC算法是一种常用的数据校验方法,不同的CRC算法适用于不同的应用领域,下面我们将介绍几种常见的CRC算法及其应用领域:

CRC-8算法

CRC-8算法适用于对数据进行简单校验的场景,例如校验一些比较简单的命令或指令等。由于其校验码长度较短,通常只有8位,因此适用于数据传输量较小的场景。常见的应用领域包括遥控器、智能家居等。

CRC-16算法

CRC-16算法适用于对数据进行中等程度的校验的场景,例如一些比较重要的通信数据、存储数据等。由于其校验码长度较长,通常为16位,因此能够提供较高的校验精度和安全性。常见的应用领域包括Modbus通信协议、SD卡存储等。

CRC-32算法

CRC-32算法适用于对数据进行高强度校验的场景,例如一些对数据完整性要求比较高的应用。由于其校验码长度较长,通常为32位,因此能够提供极高的校验精度和安全性。常见的应用领域包括网络通信、文件传输、数据库存储等。

特殊版本的CRC算法

除了常见的CRC算法外,还有一些特殊版本的CRC算法,适用于一些特定的应用场景。例如:

CRC-CCITT算法

适用于通信领域,例如Modem、ISDN、X.25等协议中的数据校验。

CRC-ITU算法

适用于电信领域,例如V.41、V.42等协议中的数据校验。

CRC-USB算法

适用于USB接口,例如USB 1.1、USB 2.0等协议中的数据校验。


示例代码

CRC-8算法

public static byte CalculateCRC8(byte[] data)
{
    byte crc = 0x00;
    byte polynomial = 0x8C; // CRC-8 polynomial

    foreach (byte b in data)
    {
        crc ^= b;

        for (int i = 0; i < 8; i++)
        {
            if ((crc & 0x80) != 0)
            {
                crc = (byte)((crc << 1) ^ polynomial);
            }
            else
            {
                crc <<= 1;
            }
        }
    }

    return crc;
}

CRC-16算法

public static ushort CalculateCRC16(byte[] data)
{
    ushort crc = 0xFFFF;
    ushort polynomial = 0xA001; // CRC-16 polynomial

    foreach (byte b in data)
    {
        crc ^= (ushort)(b << 8);

        for (int i = 0; i < 8; i++)
        {
            if ((crc & 0x8000) != 0)
            {
                crc = (ushort)((crc << 1) ^ polynomial);
            }
            else
            {
                crc <<= 1;
            }
        }
    }

    return crc;
}

CRC-32算法

public static uint CalculateCRC32(byte[] data)
{
    uint crc = 0xFFFFFFFF;
    uint polynomial = 0xEDB88320; // CRC-32 polynomial

    foreach (byte b in data)
    {
        crc ^= b;

        for (int i = 0; i < 8; i++)
        {
            if ((crc & 0x00000001) != 0)
            {
                crc = (crc >> 1) ^ polynomial;
            }
            else
            {
                crc >>= 1;
            }
        }
    }

    return ~crc;
}

CRC-CCITT算法

public static ushort CalculateCRC_CCITT(byte[] data)
{
    ushort crc = 0xFFFF;
    ushort polynomial = 0x1021; // CCITT polynomial

    foreach (byte b in data)
    {
        crc ^= (ushort)(b << 8);

        for (int i = 0; i < 8; i++)
        {
            if ((crc & 0x8000) != 0)
            {
                crc = (ushort)((crc << 1) ^ polynomial);
            }
            else
            {
                crc <<= 1;
            }
        }
    }

    return crc;
}

CRC-16-CCITT算法

public static ushort CalculateCRC16_CCITT(byte[] data)
{
    ushort crc = 0xFFFF;
    ushort polynomial = 0x1021; // CCITT polynomial

    foreach (byte b in data)
    {
        crc ^= (ushort)(b << 8);

        for (int i = 0; i < 8; i++)
        {
            if ((crc & 0x8000) != 0)
            {
                crc = (ushort)((crc << 1) ^ polynomial);
            }
            else
            {
                crc <<= 1;
            }
        }
    }

    return (ushort)(crc ^ 0xFFFF);
}

CRC-ITU算法

public static ushort CalculateCRC_ITU(byte[] data)
{
    ushort crc = 0x0000;
    ushort polynomial = 0x1021; // ITU polynomial

    foreach (byte b in data)
    {
        crc ^= (ushort)(b << 8);

        for (int i = 0; i < 8; i++)
        {
            if ((crc & 0x8000) != 0)
            {
                crc = (ushort)((crc << 1) ^ polynomial);
            }
            else
            {
                crc <<= 1;
            }
        }
    }

    return crc;
}

CRC-USB算法

public static uint CalculateCRC_USB(byte[] data)
{
    uint crc = 0xFFFFFFFF;
    uint polynomial = 0x04C11DB7; // USB polynomial

    foreach (byte b in data)
    {
        crc ^= (uint)(b << 24);

        for (int i = 0; i < 8; i++)
        {
            if ((crc & 0x80000000) != 0)
            {
                crc = (crc << 1) ^ polynomial;
            }
            else
            {
                crc <<= 1;
            }
        }
    }

    return ~crc;
}
1、循环校验码(CRC码):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。   2、生成CRC码的基本原理:任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应。例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111。   3、CRC码集选择的原则:若设码字长度为N,信息字段为K位,校验字段为R位(N=K+R),则对于CRC码集中的任一码字,存在且仅存在一个R次多项式g(x),使得   V(x)=A(x)g(x)=xRm(x)+r(x);   其中: m(x)为K次信息多项式, r(x)为R-1次校验多项式,   g(x)称为生成多项式:   g(x)=g0+g1x+ g2x2+...+g(R-1)x(R-1)+gRxR   发送方通过指定的g(x)产生CRC码字,接收方则通过该g(x)来验证收到的CRC码字。   4、CRC校验码软件生成方法:   借助于多项式除法,其余数为校验字段。   例如:信息字段代码为: 1011001;对应m(x)=x6+x4+x3+1   假设生成多项式为:g(x)=x4+x3+1;则对应g(x)的代码为: 11001   x4m(x)=x10+x8+x7+x4 对应的代码记为:10110010000;   采用多项式除法: 得余数为: 1010 (即校验字段为:1010)   发送方:发出的传输字段为: 1 0 1 1 0 0 1 1 0 10   信息字段 校验字段   接收方:使用相同的生成码进行校验:接收到的字段/生成码(二进制除法)   如果能够除尽,则正确,
你想学习C#工控上位机开发,这是一个非常实用的技能!以下是一些学习C#工控上位机开发的步骤和资源: 1. 掌握C#语言基础:首先,你需要对C#语言有一定的了解。你可以通过阅读教材、参加在线课程或观看教学视频来学习C#的基础知识。 2. 学习工控上位机基础知识:了解工控系统的基本概念和原理,包括PLC(可编程逻辑控制器)、HMI(人机界面)等。这将帮助你理解工控上位机开发的背景和需求。 3. 学习工控上位机开发框架:掌握常用的工控上位机开发框架,如.NET Framework、WPF(Windows Presentation Foundation)等。这些框架提供了丰富的工具和库,可以简化工控上位机应用程序的开发过程。 4. 学习通信协议:熟悉常用的工控通信协议,如Modbus、OPC UA等。理解这些协议的原理和使用方法,可以帮助你在工控上位机应用中进行设备通信和数据交换。 5. 实践项目:通过完成一些实际的工控上位机项目,锻炼你的开发技能。可以选择一些简单的项目开始,逐渐增加复杂度和功能。 6. 参考资料和资源:在学习过程中,可以参考一些相关的书籍、教程和在线资源。例如,CSDN、Stack Overflow等技术社区上有很多与C#工控上位机开发相关的文章和讨论。 记住,工控上位机开发是一个复杂的领域,需要不断学习和实践才能掌握。祝你学习顺利!如果有更多问题,欢迎继续提问。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿长大人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值