Mongodb Mapreduce 初窥

         在单台机器上做这种模型测试就效率上是得不尝失的(执行周期太长),特别是数据量特别大(比如3000w以上),所以应用(或运行)场景的选择很重要。

 上面所说的示例比较简单,都是在单一reduce任务中的执行场景,如下图:



          实际的生产环境要比上图复杂许多,比如多reduce任务情况,在Hadoop中,如果运行多个reduce任务,map任务会对其输出进行分区,为每个reduce任务创建一个分区(partition)。每个分区包含许多键(及其关联的值),但每个键的记录都在同一个分区中。分区可以通过用户定义的partitioner来控制。如下图: 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值