求解最短路:Dijkstra‘s algorithm

求解最短路:Dijkstra‘s algorithm

  • 该算法的原始版本仅适用于找到两个顶点之间的最短路径,后来更常见的变体固定了一个顶点作为源结点然后找到该顶点到图中所有其它结点的最短路径。
  • 特别注意:不能处理带有负权边的图
  • 基本的算法思想是维护两个顶点集合 S S S Q Q Q ,集合 S S S 保留所有已知实际最短路径值的顶点,集合 Q Q Q 则保留其他的顶点。初始时 S S S 为空,然后每一步都有一个顶点从 Q Q Q 移动到 S S S ,这个被选择的顶点是 Q Q Q 中到源点距离最短的点 ( d [ u ] 最 小 ) (d[u]最小) (d[u]) 。而当一个顶点移动到 S S S 中,需要更新当前 Q Q Q 中的顶点到源点的最短距离(该操作也称之为”松弛“)。
  • 考虑优化:算法中有一个操作是”挑选出集合 Q Q Q 中到源点距离最短的点“,挨个比过去就是 O ( n ) O(n) O(n)的复杂度,因此可以选择二叉堆优化,时间复杂度为 O ( l o g n ) O(logn) O(logn)
// dij+堆优化模板代码
	ll d[100000+10];//到源点的最短距离
	bool vis[100000+10];//判断是否已经进入到集合S中
	struct Node{
		Node(int _id){//构造函数 
			id = _id;
			dis = d[_id];
		}
		int id;
		ll dis;
	}; 
	bool operator<(const Node &a,const Node &b){//定义结构体的排序方式 小根堆 
		return a.dis>b.dis;
	}
	void dij()
	{
		priority_queue<Node>q;
		q.push(Node(s));//起点s
		while(!q.empty())
		{
			Node now = q.top(); q.pop();
			int u = now.id; //当前所在位置 
			if(vis[u]) continue;
			vis[u] = 1;
			
			for(int i=0;i<vec[u].size();i++)
			{
				int v = vec[u][i]; ll ww = (ll)w[u][i] + d[u];
				if(ww<d[v]) //松弛操作,入堆 
				{
					d[v] =  ww;
					q.push(Node(v));//这里其实会入堆许多无用的点,因为二叉堆只取根节点且会一直更新就没啥了。
				}
			}
		}	
		for(int i=1;i<=n;i++)
		{ //输出起始点s到所有结点的最短距离 
			cout<<d[i]<<" ";
		}
	}

https://zh.wikipedia.org/wiki/戴克斯特拉算法

https://oi-wiki.org/graph/shortest-path/#dijkstra

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值