任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:
F(1)=1;
F(2)=2;
F(n)=F(n-1)+F(n-2)(n>=3);
所以,1,2,3,5,8,13……就是菲波那契数列。
在HDOJ上有不少相关的题目,比如1005 Fibonacci again就是曾经的浙江省赛题。
今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、 这是一个二人游戏;
2、 一共有3堆石子,数量分别是m, n, p个;
3、 两人轮流走;
4、 每走一步可以选择任意一堆石子,然后取走f个;
5、 f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);
6、 最先取光所有石子的人为胜者;
假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。
Input
输入数据包含多个测试用例,每个测试用例占一行,包含3个整数m,n,p(1<=m,n,p<=1000)。
m=n=p=0则表示输入结束。
Output
如果先手的人能赢,请输出“Fibo”,否则请输出“Nacci”,每个实例的输出占一行。
Sample Input
1 1 1
1 4 1
0 0 0
Sample Output
Fibo
Nacci
题意:不解释
题解:求出sg函数亦或即可,2种sg函数写法,上代码:
1.循环sg打表:
#include <bits/stdc++.h>
using namespace std;
const int MAX = 1e4+10;
int sg[MAX],f[MAX];
bool Hash[MAX];
void getsg(int m){
memset(sg,0,sizeof(sg));
for (int i = 1; i < MAX;i++){
memset(Hash,false,sizeof(Hash));
for (int j = 0; j < m&&f[j]<=i;j++){
Hash[sg[i-f[j]]]=true;
}
for (int j = 0; j < MAX;j++){
if(!Hash[j]){
sg[i]=j;
break;
}
}
}
}
int cnt;
void init(){
f[0]=1;
f[1]=2;
cnt=1;
for (int i = 2; f[i-1] <= MAX;i++){
f[i]=f[i-1]+f[i-2];
cnt++;
}
}
int main(){
init();
getsg(cnt);
int m,n,p;
while(scanf("%d%d%d",&m,&n,&p),m+n+p){
if(sg[m]^sg[n]^sg[p]) puts("Fibo");
else puts("Nacci");
}
return 0;
}
2.深搜sg:
#include <bits/stdc++.h>
using namespace std;
const int MAX = 1e4+10;
int sg[MAX],f[MAX];
int cnt,m;
void init(){
f[0]=1;
f[1]=2;
cnt=1;
for (int i = 2; f[i-1] <= MAX;i++){
f[i]=f[i-1]+f[i-2];
cnt++;
}
}
int sg_dfs(int x){
if(sg[x]!=-1) return sg[x];
bool vis[110];
memset(vis,false,sizeof(vis));
for (int i = 0; i < m;i++){
if(x>=f[i]){
sg_dfs(x-f[i]);
vis[sg[x-f[i]]]=1;
}
}
int e;
for (int i = 0; ; i++){
if(!vis[i]){
e=i;
break;
}
}
return sg[x]=e;
}
int main(){
init();
m=cnt;
int mm,n,p;
memset(sg,-1,sizeof(sg));//注意初始化为-1
while(scanf("%d%d%d",&mm,&n,&p),mm+n+p){
if(sg_dfs(mm)^sg_dfs(n)^sg_dfs(p)) puts("Fibo");
else puts("Nacci");
}
return 0;
}