链接:https://ac.nowcoder.com/acm/problem/20362
来源:牛客网
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
小W喜欢读书,尤其喜欢读《约翰克里斯朵夫》。最近小W准备读一本新书,这本书一共有P页,页码范围为0⋯P−1。
小W很忙,所以每天只能读一页书。为了使事情有趣一些,他打算使用NOI2012上学习的线性同余法生成一个序列,来决定每天具体读哪一页。
我们用Xi来表示通过这种方法生成出来的第i个数,也即小W第i天会读哪一页。这个方法需要设置3个参数a,b,X1,满足0≤a,b,X1≤p−1,且a,b,X1都是整数。按照下面的公式生成出来一系列的整数:Xi+1≡aXi+b(mod p)其中mod表示取余操作。
但是这种方法可能导致某两天读的页码一样。
小W要读这本书的第t页,所以他想知道最早在哪一天能读到第t页,或者指出他永远不会读到第t页。
输入描述:
输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数。
接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据。保证X1和t都是合法的页码。
注意:P一定为质数
输出描述:
共T行,每行一个整数表示他最早读到第t页是哪一天。如果他永远不会读到第t页,输出-1。
示例1
输入
复制
3
7 1 1 3 3
7 2 2 2 0
7 2 2 2 1
输出
复制
1
3
-1
题意:就是题目中给的那个式子能不能推出t来,如果能输出需要推导几次,不能输出-1
题解:
上代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <tr1/unordered_map>
using namespace std::tr1;
using namespace std;
typedef long long ll;
ll quick(ll a, ll b,ll c){
ll ans=1;
while(b){
if(b&1) ans=(ans*a)%c;
b>>=1;
a=(a*a)%c;
}
return ans%c;
}
void exgcd(int a,int &x,int b,int &y){//ax+by=1
if(!b){
x=1;y=0;
return ;
}
exgcd(b,y,a%b,x);
y-=a/b*x;
}
int inverse(int x,int y){//x^(-1)(mod y) <=> x*x^(-1)+y*k=1
int inv_x,k;
exgcd(x,inv_x,y,k);
return (inv_x%y+y)%y;
}
int BSGS(int a,int b,int c){//a^x=b(mod c)
//特判答案<=100的情况
for(int x=0,pow_a_x=1%c;x<=100;++x){
if(pow_a_x==b)return x;
pow_a_x=(long long)pow_a_x*a%c;
}
//通过预处理使得a,c互质
int base_count=0,D=1;
while(1){
int d=__gcd(a,c);
if(d==1)break;
if(b%d)return -1;
b/=d;c/=d;
D=(long long)D*(a/d)%c;
++base_count;
}
b=(long long)b*inverse(D,c)%c;
//解a^(x-base_count)=b(mod c)
int n=sqrt(c);
unordered_map<int,int>hash_table;
int pow_a_j=1;
for (int j = 1; j <= n;++j){
pow_a_j=(long long)pow_a_j*a%c;
hash_table[(long long)pow_a_j*b%c]=j;
}
int pow_a_n=pow_a_j,pow_a_in=1,max_i=(c+n-1)/n;
for (int i = 1; i <= max_i;++i){
pow_a_in=(long long)pow_a_in*pow_a_n%c;
if(hash_table.count(pow_a_in)) return i*n-hash_table[pow_a_in]+base_count;
}
return -1;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
int p,a,b,x1,t;
scanf("%d%d%d%d%d",&p,&a,&b,&x1,&t);
if(x1==t){
puts("1");
continue;
}
if(a==0){
if(b==t) puts("2");
else puts("-1");
}
else if(a==1){
t=(t-x1+p)%p;
if(t%__gcd(b,p)) puts("-1");
else printf("%d\n",(t*quick(b,p-2,p))%p+1);
}
else{
int cao=((t+b*quick(a-1,p-2,p))%p*quick((x1+b*quick(a-1,p-2,p))%p,p-2,p))%p;
int w=BSGS(a,cao,p)%p;
if(w==-1) puts("-1");
else printf("%d\n",w+1);
}
}
return 0;
}