实操教程|Pytorch - 弹性训练极简实现( 附源码)

作者:颜挺帅@知乎

原文:https://zhuanlan.zhihu.com/p/489892744

文仅分享,侵删

5ec9d19017565b9654ffae74f65f6408.gif

导读

作者将以往抽象的分布式训练的概念以代码的形式展现出来,并保证每个代码可执行、可验证、可复现。与此同时贡献出来源码让大家相互交流。希望能对各位读者有所帮助。

1. 介绍

Pytorch在1.9.0引入了torchrun,用其替代1.9.0以前版本的torch.distributed.launch。torchrun在torch.distributed.launch 功能的基础上主要新增了两个功能:

  • Failover: 当worker训练失败时,会自动重新启动所有worker继续进行训练;

  • Elastic: 可以动态增加或或删除node节点,本文将通过一个例子说明Elastic Training应该如何使用;

本例中会先在Node0上启动4 GPU的worker group ,等其训练一段时间后,会在Node1上再启动4 GPU的workers,并与Node1上的workers构成一个新的worker group,最终构成一个2机8卡的分布式训练。

4230aac7fb704ddecd987d1d52317052.png

2. 模型构建

一个简单的全连接模型神经网络模型

class ToyModel(nn.Module):
    def __init__(self):
        super(ToyModel, self).__init__()
        self.net1 = nn.Linear(10, 10)
        self.relu = nn.ReLU()
        self.net2 = nn.Linear(10, 5)

    def forward(self, x):
        return self.net2(self.relu(self.net1(x)))

3. checkpoint 处理

由于再每次增加或删除node时,会将所有worker kill掉,然后再重新启动所有worker进行训练。因此,在训练代码中要对训练的状态进行保存,以保证重启后能接着上次的状态继续训练。

需要保存的信息一般有如下内容:

  • model :模型的参数信息

  • optimizer :优化器的参数信心

  • epoch:当前执行到第几个epoch

save和load的代码如下所示:

  • torch.save:利用python的pickle将python的object 进行序列化,并保存到本地文件;

  • torch.load : 将torch.save后的本地文件进行反序列化,并加载到内存中;

  • model.state_dict(): 存储了model 每个layer和其对应的param信息

  • optimizer.state_dict():存储了优化器的参数信信息

def save_checkpoint(epoch, model, optimizer, path):
    torch.save({
    "epoch": epoch,
    "model_state_dict": model.state_dict(),
    "optimize_state_dict": optimizer.state_dict(),
}, path)

def load_checkpoint(path):
    checkpoint = torch.load(path)
    return checkpoint

4. 训练代码

初始化逻辑如下:

  • 1~3行: 输出当前worker的关键环境变量,用于后面的结果展示

  • 5~8行:创建模型、优化器和损失函数

  • 10~12行:初始化参数信息

  • 14~19行:如果存在checkpoint,则加载checkpoint,并赋值给model、optimizer和firt_epoch

local_rank = int(os.environ["LOCAL_RANK"])
    rank = int(os.environ["RANK"])
    print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) train worker starting...")
    
    model = ToyModel().cuda(local_rank)
    ddp_model = DDP(model, [local_rank])
    loss_fn = nn.MSELoss()
    optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)
    optimizer.zero_grad()
    max_epoch = 100
    first_epoch = 0
    ckp_path = "checkpoint.pt"
    
    if os.path.exists(ckp_path):
        print(f"load checkpoint from {ckp_path}")
        checkpoint = load_checkpoint(ckp_path)
        model.load_state_dict(checkpoint["model_state_dict"])
        optimizer.load_state_dict(checkpoint["optimize_state_dict"])
        first_epoch = checkpoint["epoch"]

训练逻辑:

  • 1行:epoch执行的次数为first_epoch到max_epoch,以便能够在worker被重启后继续原有的epoch继续训练;

  • 2行:为了展示动态添加node效果,这里添加sleep函数来降低训练的速度;

  • 3~8行:模型训练流程;

  • 9行:为了简单,文本每个epoch进行一次checkpoint保存;将当前的epoch,model和optimizer保存到checkpoint中;

for i in range(first_epoch, max_epoch):
        time.sleep(1) # 为了展示动态添加node效果,这里添加sleep函数来降低训练的速度
        outputs = ddp_model(torch.randn(20, 10).to(local_rank))
        labels = torch.randn(20, 5).to(local_rank)
        loss = loss_fn(outputs, labels)
        loss.backward()
        print(f"[{os.getpid()}] epoch {i} (rank = {rank}, local_rank = {local_rank}) loss = {loss.item()}\n")
        optimizer.step()
        save_checkpoint(i, model, optimizer, ckp_path)

5. 启动方式

由于我们使用torchrun来启动多机多卡任务,无需使用spawn接口来启动多个进程(torchrun会负责将我们的python script启动为一个process),因此直接调用上文编写的train函数,并在前后分别添加DistributedDataParallel的初始化和效果函数即可。

下面代码描述了上文train接口的调用。

def run():
    env_dict = {
        key: os.environ[key]
        for key in ("MASTER_ADDR", "MASTER_PORT", "WORLD_SIZE", "LOCAL_WORLD_SIZE")
    }
    print(f"[{os.getpid()}] Initializing process group with: {env_dict}")
    dist.init_process_group(backend="nccl")
    train()
    dist.destroy_process_group()


if __name__ == "__main__":
    run()

本例中使用torchrun来执行多机多卡的分布式训练任务(注:torch.distributed.launch 已经被pytorch淘汰了,尽量不要再使用)。启动脚本描述如下(注:node0和node1均通过该脚本进行启动)

  • --nnodes=1:3 :表示当前训练任务接受最少1个node,最多3个node参与分布式训练;

  • --nproc_per_node=4:表示每个node上节点有4个process

  • --max_restarts=3: worker group最大的重启次数;这里需要注意的是,node fail、node scale down和node scale up都会导致restart;

  • --rdzv_id=1:一个unique的job id,所有node均使用同一个job id;

  • --rdzv_backend: rendezvous的backend实现,默认支持c10d和etcd两种;rendezvous用于多个node之间的通信和协调;

  • --rdzv_endpoint:rendezvous的地址,应该为一个node的host ip和port;

torchrun \
    --nnodes=1:3\
    --nproc_per_node=4\
    --max_restarts=3\
    --rdzv_id=1\
    --rdzv_backend=c10d\
    --rdzv_endpoint="192.0.0.1:1234"\
    train_elastic.py

6. 结果分析

代码:BetterDL - train_elastic.py:https://github.com/tingshua-yts/BetterDL/blob/master/test/pytorch/DDP/train_elastic.py

运行环境: 2台4卡 v100机器

image: pytorch/pytorch:1.11.0-cuda11.3-cudnn8-runtime

gpu: v100

先在node0上执行执行启动脚本

torchrun \
    --nnodes=1:3\
    --nproc_per_node=4\
    --max_restarts=3\
    --rdzv_id=1\
    --rdzv_backend=c10d\
    --rdzv_endpoint="192.0.0.1:1234"\
    train_elastic.py

得到如下结果

  • 2~5行:当前启动的是单机4卡的训练任务,因此WORLD_SIZE为4, LOCAL_WORKD_SIZE也为4

  • 6~9行:共有4个rank参与了分布式训练,rank0~rank3

  • 10~18行: rank0~rank3 均从epoch=0开始训练

r/workspace/DDP# sh run_elastic.sh
[4031] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '44901', 'WORLD_SIZE': '4', 'LOCAL_WORLD_SIZE': '4'}
[4029] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '44901', 'WORLD_SIZE': '4', 'LOCAL_WORLD_SIZE': '4'}
[4030] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '44901', 'WORLD_SIZE': '4', 'LOCAL_WORLD_SIZE': '4'}
[4032] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '44901', 'WORLD_SIZE': '4', 'LOCAL_WORLD_SIZE': '4'}
[4029] (rank = 0, local_rank = 0) train worker starting...
[4030] (rank = 1, local_rank = 1) train worker starting...
[4032] (rank = 3, local_rank = 3) train worker starting...
[4031] (rank = 2, local_rank = 2) train worker starting...
[4101] epoch 0 (rank = 1, local_rank = 1) loss = 0.9288564920425415
[4103] epoch 0 (rank = 3, local_rank = 3) loss = 0.9711472988128662
[4102] epoch 0 (rank = 2, local_rank = 2) loss = 1.0727070569992065
[4100] epoch 0 (rank = 0, local_rank = 0) loss = 0.9402943253517151
[4100] epoch 1 (rank = 0, local_rank = 0) loss = 1.0327017307281494
[4101] epoch 1 (rank = 1, local_rank = 1) loss = 1.4485043287277222
[4103] epoch 1 (rank = 3, local_rank = 3) loss = 1.0959293842315674
[4102] epoch 1 (rank = 2, local_rank = 2) loss = 1.0669530630111694
...

在node1上执行与上面相同的脚本

torchrun \
    --nnodes=1:3\
    --nproc_per_node=4\
    --max_restarts=3\
    --rdzv_id=1\
    --rdzv_backend=c10d\
    --rdzv_endpoint="192.0.0.1:1234"\
    train_elastic.py

node1上结果如下:

  • 2~5行:由于添加node1,当前执行的是2机8卡的分布式训练任务,因此WORLD_SIZE=8, LOCAL_WORLD_SIZE=4

  • 6~9行:当前node1上workers的rank为rank4 ~rank7

  • 13~20行: 由于node1是在node0上work训练到epoch35的时候加入的,因此其接着epoch 35开始训练

/workspace/DDP# sh run_elastic.sh
[696] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '42913', 'WORLD_SIZE': '8', 'LOCAL_WORLD_SIZE': '4'}
[697] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '42913', 'WORLD_SIZE': '8', 'LOCAL_WORLD_SIZE': '4'}
[695] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '42913', 'WORLD_SIZE': '8', 'LOCAL_WORLD_SIZE': '4'}
[694] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '42913', 'WORLD_SIZE': '8', 'LOCAL_WORLD_SIZE': '4'}
[697] (rank = 7, local_rank = 3) train worker starting...
[695] (rank = 5, local_rank = 1) train worker starting...
[694] (rank = 4, local_rank = 0) train worker starting...
[696] (rank = 6, local_rank = 2) train worker starting...
load checkpoint from checkpoint.ptload checkpoint from checkpoint.pt
load checkpoint from checkpoint.pt
load checkpoint from checkpoint.pt
[697] epoch 35 (rank = 7, local_rank = 3) loss = 1.1888569593429565
[694] epoch 35 (rank = 4, local_rank = 0) loss = 0.8916441202163696
[695] epoch 35 (rank = 5, local_rank = 1) loss = 1.5685604810714722
[696] epoch 35 (rank = 6, local_rank = 2) loss = 1.11683189868927
[696] epoch 36 (rank = 6, local_rank = 2) loss = 1.3724170923233032
[694] epoch 36 (rank = 4, local_rank = 0) loss = 1.061527967453003
[695] epoch 36 (rank = 5, local_rank = 1) loss = 0.96876460313797
[697] epoch 36 (rank = 7, local_rank = 3) loss = 0.8060566782951355
...

node0上结果如下:

  • 6~9行: node0上的works在执行到epoch 35时,node1上执行了训练脚本,请求加入到训练任务中

  • 10~13行:所有workers重新启动,由于添加了node1,当前执行的是2机8卡的分布式训练任务,因此WORLD_SIZE=8, LOCAL_WORLD_SIZE=4

  • 14~17行:当前node1上works的rank为rank0~rank3

  • 18~21行:加载checkpoint

  • 22~30行:接着checkpoint中的model、optimizer和epoch继续训练

...
[4100] epoch 35 (rank = 0, local_rank = 0) loss = 1.0746158361434937
[4101] epoch 35 (rank = 1, local_rank = 1) loss = 1.1712706089019775
[4103] epoch 35 (rank = 3, local_rank = 3) loss = 1.1774182319641113
[4102] epoch 35 (rank = 2, local_rank = 2) loss = 1.0898035764694214
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 4100 closing signal SIGTERM
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 4101 closing signal SIGTERM
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 4102 closing signal SIGTERM
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 4103 closing signal SIGTERM
[4164] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '42913', 'WORLD_SIZE': '8', 'LOCAL_WORLD_SIZE': '4'}
[4165] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '42913', 'WORLD_SIZE': '8', 'LOCAL_WORLD_SIZE': '4'}
[4162] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '42913', 'WORLD_SIZE': '8', 'LOCAL_WORLD_SIZE': '4'}
[4163] Initializing process group with: {'MASTER_ADDR': '192.0.0.1', 'MASTER_PORT': '42913', 'WORLD_SIZE': '8', 'LOCAL_WORLD_SIZE': '4'}
[4162] (rank = 0, local_rank = 0) train worker starting...
[4163] (rank = 1, local_rank = 1) train worker starting...
[4164] (rank = 2, local_rank = 2) train worker starting...
[4165] (rank = 3, local_rank = 3) train worker starting...
load checkpoint from checkpoint.pt
load checkpoint from checkpoint.pt
load checkpoint from checkpoint.pt
load checkpoint from checkpoint.pt
[4165] epoch 35 (rank = 3, local_rank = 3) loss = 1.3437936305999756
[4162] epoch 35 (rank = 0, local_rank = 0) loss = 1.5693414211273193
[4163] epoch 35 (rank = 1, local_rank = 1) loss = 1.199862003326416
[4164] epoch 35 (rank = 2, local_rank = 2) loss = 1.0465545654296875
[4163] epoch 36 (rank = 1, local_rank = 1) loss = 0.9741991758346558
[4162] epoch 36 (rank = 0, local_rank = 0) loss = 1.3609280586242676
[4164] epoch 36 (rank = 2, local_rank = 2) loss = 0.9585908055305481
[4165] epoch 36 (rank = 3, local_rank = 3) loss = 0.9169824123382568
...

7. 相关资料

Pytorch - 分布式训练极简体验:https://zhuanlan.zhihu.com/p/477073906

Pytorch - 分布式通信原语(附源码):https://zhuanlan.zhihu.com/p/478953028

Pytorch - 手写allreduce分布式训练(附源码):https://zhuanlan.zhihu.com/p/482557067

Pytorch - 算子间并行极简实现(附源码):https://zhuanlan.zhihu.com/p/483640235

Pytorch - 多机多卡极简实现(附源码):https://zhuanlan.zhihu.com/p/486130584

猜您喜欢:

eb64cf9087dbfd894d91d2bc113ccabd.png 戳我,查看GAN的系列专辑~!

一顿午饭外卖,成为CV视觉的前沿弄潮儿!

 ICCV 2021 | 35个GAN主题,最全GAN论文汇总

超110篇!CVPR 2021最全GAN论文汇总梳理!

超100篇!CVPR 2020最全GAN论文梳理汇总!

拆解组新的GAN:解耦表征MixNMatch

StarGAN第2版:多域多样性图像生成

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 |《计算机视觉中的数学方法》分享

《基于深度学习的表面缺陷检测方法综述》

《零样本图像分类综述: 十年进展》

《基于深度神经网络的少样本学习综述》

415e70885edaff70661c7ab44c680d84.png

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
pytorch-cnn-股票预测是一个使用PyTorch框架实现的卷积神经网络模型,用于预测股票价格走势的源代码。 这个项目的目的是通过训练一个卷积神经网络模型,来预测股票价格的未来走势。卷积神经网络是一种深度学习模型,通过自动提取特征并学习数据之间的非线性关系来进行预测。 在这个源码中,首先进行数据的预处理。通常会使用历史股票价格的时间序列作为输入数据,以及对应的目标值作为标签。数据预处理的操作可能包括数据标准化、缺失值填充等等。 接下来,我们构建卷积神经网络模型。在源码中,可能会使用PyTorch提供的卷积层(Convolutional Layer)、池化层(Pooling Layer)和全连接层(Fully Connected Layer)等组件来构建模型,以及使用ReLU、Dropout等激活函数和正则化方法来提高模型的性能。 然后,我们定义损失函数,通常选择均方误差(Mean Squared Error)或交叉熵损失(Cross Entropy Loss)作为模型训练的目标函数,以便优化模型的预测结果。 最后,我们使用训练数据来训练模型,并使用测试数据来评估模型的性能。在源码中,我们会定义训练函数和测试函数,通过迭代训练,不断调整模型参数,以使得模型能够更准确地预测未知数据的输出结果。 总结来说,pytorch-cnn-股票预测-源码是一个基于PyTorch框架实现的卷积神经网络模型,用于预测股票价格走势的源代码。通过数据预处理、构建网络模型、定义损失函数和训练评估等步骤,可以使用这个代码来进行股票预测模型的训练和测试。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值