题目描述
已知 nn 个整数 x_1,x_2,…,x_nx
1
,x
2
,…,x
n
,以及11个整数kk(k<nk<n)。从nn个整数中任选kk个整数相加,可分别得到一系列的和。例如当n=4,k=3n=4,k=3,44个整数分别为3,7,12,193,7,12,19时,可得全部的组合与它们的和为:
3+7+12=223+7+12=22
3+7+19=293+7+19=29
7+12+19=387+12+19=38
3+12+19=343+12+19=34。
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:3+7+19=293+7+19=29。
输入格式
键盘输入,格式为:
n,kn,k(1 \le n \le 20,k<n1≤n≤20,k<n)
x_1,x_2,…,x_n (1 \le x_i \le 5000000)x
1
,x
2
,…,x
n
(1≤x
i
≤5000000)
输出格式
屏幕输出,格式为: 11个整数(满足条件的种数)。
输入输出样例
输入 #1复制
4 3
3 7 12 19
输出 #1复制
1
说明/提示
【题目来源】
NOIP 2002 普及组第二题
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll a[25];
bool vis[25];
ll res=0;
int n,m;
inline int read()
{
char c = getchar();
int x=0,f=1;
while(c<'0'||c>'9')
{
if(c=='-') f = -1;
c=getchar();
}
while(c>='0'&&c<='9')
{
x = x*10+c-'0';
c=getchar();
}
return x*f;
}
bool isprimer(ll num)
{
if(num==2||num==3) return true;
if(num%6!=1&&num%6!=5) return false;
ll len = sqrt(num);
for(int i=5;i<=len+1;i+=6)
{
if(num%i==0||num%(i+2)==0) return false;
}
return true;
}
void dfs(int ms,ll sums,int k)
{
if(ms==0)
{
if(isprimer(sums)) res++;
return ;
}
for(int i=k;i+ms<=n+1;i++)
{
dfs(ms-1,sums+a[i],i+1);
}
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;i++)
{
a[i]=read();
}
dfs(m,0,1);
printf("%d",res);
return 0;
}