Sylvester不等式证明

Sylvester不等式

设A、B分别是 s × n 、 n × m s\times n、n\times m s×nn×m,则 r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) − n rank(AB)\ge rank(A)+rank(B)-n rank(AB)rank(A)+rank(B)n

证明

只需证 n + r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) n+rank(AB)\ge rank(A)+rank(B) n+rank(AB)rank(A)+rank(B)
n + r a n k ( A B ) = r a n k ( I

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值