Sylvester不等式
设A、B分别是 s × n 、 n × m s\times n、n\times m s×n、n×m,则 r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) − n rank(AB)\ge rank(A)+rank(B)-n rank(AB)≥rank(A)+rank(B)−n
证明
只需证 n + r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) n+rank(AB)\ge rank(A)+rank(B) n+rank(AB)≥rank(A)+rank(B)
n + r a n k ( A B ) = r a n k ( I