Sylvester不等式证明

Sylvester不等式

设A、B分别是 s × n 、 n × m s\times n、n\times m s×nn×m,则 r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) − n rank(AB)\ge rank(A)+rank(B)-n rank(AB)rank(A)+rank(B)n

证明

只需证 n + r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) n+rank(AB)\ge rank(A)+rank(B) n+rank(AB)rank(A)+rank(B)
n + r a n k ( A B ) = r a n k ( I n 0 0 A B ) n+rank(AB)=rank \begin{pmatrix}I_n & 0\\0 &AB \end{pmatrix} n+rank(AB)=rank(In00AB)

作分块矩阵的初等行变换

( I n 0 0 A B ) ⟶ ( I n 0 A A B ) ⟶ ( I n − B A 0 ) ⟶ ( I n B A 0 ) ⟶ ( B I n A 0 ) \begin{pmatrix} I_n&0\\0&AB\end{pmatrix}\longrightarrow \begin{pmatrix}I_n&0\\A&AB\end{pmatrix} \longrightarrow \begin{pmatrix}I_n&-B\\A&0\end{pmatrix}\\ \longrightarrow \begin{pmatrix}I_n&B\\A&0\end{pmatrix} \longrightarrow \begin{pmatrix}B&I_n\\A&0\end{pmatrix} (In00AB)(InA0AB)(InAB0)(InAB0)(BAIn0)

根据分块矩阵的初等行变换不改变矩阵的秩有:
r a n k ( I n 0 0 A B ) = ( B I n 0 A ) ≥ r a n k ( B ) + r a n k ( A ) rank \begin{pmatrix}I_n&0\\0&AB\end{pmatrix} =\begin{pmatrix}B&I_n\\0&A\end{pmatrix} \ge rank(B)+rank(A) rank(In00AB)=(B0InA)rank(B)+rank(A)
因此

r a n k ( A B ) ≥ r a n k ( A ) + r a n k ( B ) − n rank(AB)\ge rank(A)+rank(B)-n rank(AB)rank(A)+rank(B)n

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值