深度学习
文章平均质量分 53
LHHopencv
图像算法
展开
-
卷积神经网络CNN简要学习
【1】基本概念欠拟合:识别不出正确样本泛化能力:CNN模型的通用性patch匹配:块匹配特征(feature)= 卷积核(filter):样本的特征;多个【2】卷积卷积:卷积核和样本对应相乘,取平均值放中间,得到新图——特征图(feature map) 窗口按照步长滑动特征图中的值越接近于1说明对应位置和feature匹配越完整。有几个特征就会产生几个原创 2017-08-16 13:49:43 · 916 阅读 · 0 评论 -
训练神经网络中最基本的三个概念:Epoch, Batch, Iteration
转载地址:https://zhuanlan.zhihu.com/p/29409502原作者:Michael Yuan作者主页:https://www.zhihu.com/people/mikeyuan今天让我们来总结下训练神经网络中最最基础的三个概念:Epoch, Batch, Iteration。1. 名词解释2. 换算关系转载 2017-12-27 14:54:02 · 16632 阅读 · 0 评论 -
语义分割与实例分割的区别
目前的分割任务主要有两种: (1)像素级别的语义分割 (2)实例分割这个有意思,什么叫实例分割呢?它与语义分割有什么区别与联系呢? 顾名思义,像素级别的语义分割,对图像中的每个像素都划分出对应的类别,即实现像素级别的分类; 而类的具体对象,即为实例,那么实例分割不但要进行像素级别的分类,还需在具体的类别基础上区别开不同的实例。比如说图像有多个人甲、乙、丙,那边他们的语义分割转载 2018-01-10 09:56:45 · 5954 阅读 · 0 评论 -
tiny-dnn配置运行
tiny-dnn是一个轻量级的CNN(卷积神经网络),不需要各种依赖和GPU,由三千多行C++代码完成。适配android平台的话,感觉这个比较好做一点。下载地址:https://github.com/tiny-dnn/tiny-dnn新建一个cpp项目,在属性的C/C++,附加包含目录,在这把tiny-dnn的根目录加进来,导入头文件。之后新建一个cpp文件,把tiny-dnn\examples...原创 2018-02-08 09:47:57 · 2280 阅读 · 1 评论