训练神经网络中最基本的三个概念:Epoch, Batch, Iteration

转载地址:https://zhuanlan.zhihu.com/p/29409502

原作者:Michael Yuan

作者主页:https://www.zhihu.com/people/mikeyuan

今天让我们来总结下训练神经网络中最最基础的三个概念:Epoch, Batch, Iteration。


1. 名词解释


2. 换算关系

\mathbf{Number ~ of ~ Batches = \frac{Training ~ Set ~ Size}{Batch ~ Size}}


实际上,梯度下降的几种方式的根本区别就在于上面公式中的 Batch Size不同。

*注:上表中 Mini-Batch 的 Batch 个数为 N / B + 1 是针对未整除的情况。整除则是 N / B。


3. 示例

CIFAR10 数据集有 50000 张训练图片,10000 张测试图片。现在选择 Batch Size = 256 对模型进行训练。

  • 每个 Epoch 要训练的图片数量: 50000
  • 训练集具有的 Batch 个数: 50000 / 256 = 195 + 1 = 196
  • 每个 Epoch 需要完成的 Batch 个数: 196
  • 每个 Epoch 具有的 Iteration 个数: 196
  • 每个 Epoch 中发生模型权重更新的次数: 196
  • 训练 10 代后,模型权重更新的次数: 196 * 10 = 1960
  • 不同代的训练,其实用的是同一个训练集的数据。第 1 代和第 10 代虽然用的都是训练集的五万张图片,但是对模型的权重更新值却是完全不同的。因为不同代的模型处于代价函数空间上的不同位置,模型的训练代越靠后,越接近谷底,其代价越小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值