java8中对并发进行了一些增强优化。简单总结一下
原子值
从 Java5 开始,java.util.concurrent.atonic包提供了用于支持无锁可变变量的类。
/**
* 测试java8的并发增强
* @author lianghaining
*
*/
public class TestThread {
public static AtomicLong num = new AtomicLong();
@Test
public void testCAS() {
Long id = num.incrementAndGet();
}
}
incrementAndGet 方法会自动将AtomicLong 的值加 1,并返回增加后的值,并保证该操作不能被打断。同时在多线程同时并发访问同一个实例,也能够计算并返回正确的值。
在 java5 中提供很多设置、增加、减少值的原子操作。但如果你想要进行更复杂的更新操作,就必须使用compareAndSet方法。看下面的代码
public static AtomicLong num = new AtomicLong();
@Test
public void testGetMaxNum() throws InterruptedException {
Thread t1 = new Thread(new LoopVolatile());
t1.start();
Thread t2 = new Thread(new LoopVolatile2());
t2.start();
while (t1.isAlive() || t2.isAlive()) {
}
System.out.println("final val is: " + num.get());
}
private static class LoopVolatile implements Runnable {
public void run() {
long val = 0;
while (val < 10000000L) {
num.set(num.get()+1L);
val++;
}
}
}
private static class LoopVolatile2 implements Runnable {
public void run() {
long val = 0;
while (val < 10000000L) {
num.set(num.get()+1L);
val++;
}
}
}
返回结果:
final val is: 8596441
final val is: 8379896
看返回结果可知如果是线程安全的应为:20000000,但不是,而且每一次运行都不一样。这是因为 num.set(num.get()+1L)
并不是原子性的。可以看AtomicLong 中set方法。
private volatile long value;
/**
* Sets to the given value.
*
* @param newValue the new value
*/
public final void set(long newValue) {
value = newValue;
}
可以看出set只保证了可见性,并不能保证原子性。有兴趣可以看另一个人的博客为什么volatile不能保证原子性而Atomic可以你应该在一个循环里使用comparenAndSet来计算新值
如下:
private static class LoopVolatile implements Runnable {
public void run() {
long val = 0;
while (val < 10000000L) {
//num.set(num.get()+1L);
long update ;
long oldValue ;
do{
oldValue = num.get();
update = oldValue + 1;
}while(!num.compareAndSet(oldValue, update));
//num.updateAndGet(x->(x+1));
val++;
}
}
}
private static class LoopVolatile2 implements Runnable {
public void run() {
long val = 0;
while (val < 10000000L) {
//num.set(num.get()+1L);
long update ;
long oldValue ;
do{
oldValue = num.get();
update = oldValue + 1;
}while(!num.compareAndSet(oldValue, update));
//num.updateAndGet(x->(x+1));
val++;
}
}
}
返回结果:final val is: 20000000
如果另一个线程也在更新num
,很可能它已经先更新成功了。那么随后compareAndSet会返回false,并不会设置新值。此时程序再次尝试循环,读取更新后的值并试图改变它。最终,它成功地将已有值替换为新值。这远比有锁要快得多。
Now。在Java8中,你不必再编写循环了,只需要提供一个用来更新值的lambda表达式,更新操作自动完成。如下
private static class LoopVolatile implements Runnable {
public void run() {
long val = 0;
while (val < 10000000L) {
num.updateAndGet(x->(x+1));
//或num.accumulateAndGet(1,(x,y)-> x+y);
val++;
}
}
}
private static class LoopVolatile2 implements Runnable {
public void run() {
long val = 0;
while (val < 10000000L) {
num.updateAndGet(x->(x+1));
//或num.accumulateAndGet(1,(x,y)-> x+y);
val++;
}
}
}
除了它之外,Java 8还提供了返回原始值的 getAndUpdate 方法和 getAndAccumulate 方法。
当你有大量线程访问同一个原子值时,由于AtomicXXX的乐观锁更新需要太多次重试,因此会导致性能严重下降。为此,Java8 提供了LongAdder 和 LongAccumulator 来解决该问题。这两个原码我以后单独说一下,如果感兴趣可以看一下
从LONGADDER看更高效的无锁实现 皓哥的博客有介绍过。
这里写说结论:LongAdder 由多个变量组成,这些变量累加的值即为当前值。多个线程可以更新不同的被加数,当线程数量增加时,会自动增加新的被加数。由于通常情况下都是直到所有工作完成后才需要总和值,所以这种方法效率很高。
如果你的业务存在高度竞争,那么应该选择 LongAdder 来代替AtomicLong.
LongAccumulator 将这个思想带到了任意的累加操作中。如下
LongAccumulator adder = new LongAccumulator(Long::sum, 0);
与
LongAdder是一样的
ConcurrentHashMap改进
在多线程中ConcurrentHashMap是常用的一个类型,在1.8相对于1.7有很大的不同。无论是哈希冲突下大数量查询时双向链表的效率低下,还是在多线程下,分段锁实现的复杂。1.8中都做了不同的实现。
1. 1.7实现
数据结构
jdk1.7中采用Segment + HashEntry的方式进行实现,结构如下:
ConcurrentHashMap初始化时,计算出Segment数组的大小ssize和每个Segment中HashEntry数组的大小cap,并初始化Segment数组的第一个元素;其中ssize大小为2的幂次方,默认为16,cap大小也是2的幂次方,最小值为2,最终结果根据根据初始化容量initialCapacity进行计算,计算过程如下:
if (c * ssize < initialCapacity)
++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
其中Segment在实现上继承了ReentrantLock,这样就自带了锁的功能。
put实现
当执行put方法插入数据时,根据key的hash值,在Segment数组中找到相应的位置,如果相应位置的Segment还未初始化,则通过CAS进行赋值,接着执行Segment对象的put方法通过加锁机制插入数据,实现如下:
场景:线程A和线程B同时执行相同Segment对象的put方法
1、线程A执行tryLock()方法成功获取锁,则把HashEntry对象插入到相应的位置;
2、线程B获取锁失败,则执行scanAndLockForPut()方法,在scanAndLockForPut方法中,会通过重复执行tryLock()方法尝试获取锁,在多处理器环境下,重复次数为64,单处理器重复次数为1,当执行tryLock()方法的次数超过上限时,则执行lock()方法挂起线程B;
3、当线程A执行完插入操作时,会通过unlock()方法释放锁,接着唤醒线程B继续执行;
size实现
因为ConcurrentHashMap是可以并发插入数据的,所以在准确计算元素时存在一定的难度,一般的思路是统计每个Segment对象中的元素个数,然后进行累加,但是这种方式计算出来的结果并不一样的准确的,因为在计算后面几个Segment的元素个数时,已经计算过的Segment同时可能有数据的插入或则删除,在1.7的实现中,采用了如下方式:
try {
for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
先采用不加锁的方式,连续计算元素的个数,最多计算3次:
1、如果前后两次计算结果相同,则说明计算出来的元素个数是准确的;
2、如果前后两次计算结果都不同,则给每个Segment进行加锁,再计算一次元素的个数;
2.1.8实现
数据结构
1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,结构如下:
只有在执行第一次put方法时才会调用initTable()初始化Node数组,实现如下:
/**
* Initializes table, using the size recorded in sizeCtl.
*/
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
put实现
当执行put方法插入数据时,根据key的hash值,在Node数组中找到相应的位置,实现如下:
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
1、如果相应位置的Node还未初始化,则通过CAS插入相应的数据;
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
2、如果相应位置的Node不为空,且当前该节点不处于移动状态,则对该节点加synchronized锁,如果该节点的hash不小于0,则遍历链表更新节点或插入新节点;
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key, value, null);
break;
}
}
}
3、如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
4、如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
5、如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount;
size实现
1.8中使用一个volatile类型的变量baseCount记录元素的个数,当插入新数据或则删除数据时,会通过addCount()方法更新baseCount,实现如下:
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
1、初始化时counterCells为空,在并发量很高时,如果存在两个线程同时执行CAS修改baseCount值,则失败的线程会继续执行方法体中的逻辑,使用CounterCell记录元素个数的变化;
2、如果CounterCell数组counterCells为空,调用fullAddCount()方法进行初始化,并插入对应的记录数,通过CAS设置cellsBusy字段,只有设置成功的线程才能初始化CounterCell数组,实现如下:
else if (cellsBusy == 0 && counterCells == as &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean init = false;
try { // Initialize table
if (counterCells == as) {
CounterCell[] rs = new CounterCell[2];
rs[h & 1] = new CounterCell(x);
counterCells = rs;
init = true;
}
} finally {
cellsBusy = 0;
}
if (init)
break;
}
3、如果通过CAS设置cellsBusy字段失败的话,则继续尝试通过CAS修改baseCount字段,如果修改baseCount字段成功的话,就退出循环,否则继续循环插入CounterCell对象;
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
break;
所以在1.8中的size实现比1.7简单多,因为元素个数保存baseCount中,部分元素的变化个数保存在CounterCell数组中,实现如下:
public int size() {
long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int)n);
}
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a;
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
通过累加baseCount和CounterCell数组中的数量,即可得到元素的总个数;
通过测试1.8的性能在get和size时有明显的性能优势,put的性能与1.7相当
CompletableFuture
这里引入简书的一个文章。常用的已经说了CompletableFuture详解
CompletableFuture类实现了CompletionStage和Future接口。Future是Java 5添加的类,用来描述一个异步计算的结果,但是获取一个结果时方法较少,要么通过轮询isDone,确认完成后,调用get()获取值,要么调用get()设置一个超时时间。但是这个get()方法会阻塞住调用线程,这种阻塞的方式显然和我们的异步编程的初衷相违背。
为了解决这个问题,JDK吸收了guava的设计思想,加入了Future的诸多扩展功能形成了CompletableFuture。
CompletionStage是一个接口,从命名上看得知是一个完成的阶段,它里面的方法也标明是在某个运行阶段得到了结果之后要做的事情。
- 进行变换
public <U> CompletionStage<U> thenApply(Function<? super T,? extends U> fn);
public <U> CompletionStage<U> thenApplyAsync(Function<? super T,? extends U> fn);
public <U> CompletionStage<U> thenApplyAsync(Function<? super T,? extends U> fn,Executor executor);
首先说明一下已Async结尾的方法都是可以异步执行的,如果指定了线程池,会在指定的线程池中执行,如果没有指定,默认会在ForkJoinPool.commonPool()中执行,下文中将会有好多类似的,都不详细解释了。关键的入参只有一个Function,它是函数式接口,所以使用Lambda表示起来会更加优雅。它的入参是上一个阶段计算后的结果,返回值是经过转化后结果。
例如:
@Test
public void thenApply() {
String result = CompletableFuture.supplyAsync(() -> "hello").thenApply(s -> s + " world").join();
System.out.println(result);
}
结果为:
hello world
- 进行消耗
public CompletionStage<Void> thenAccept(Consumer<? super T> action);
public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action);
public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action,Executor executor);
thenAccept是针对结果进行消耗,因为他的入参是Consumer,有入参无返回值。
例如:
@Test
public void thenAccept(){
CompletableFuture.supplyAsync(() -> "hello").thenAccept(s -> System.out.println(s+" world"));
}
结果为:
hello world
- 对上一步的计算结果不关心,执行下一个操作。
public CompletionStage<Void> thenRun(Runnable action);
public CompletionStage<Void> thenRunAsync(Runnable action);
public CompletionStage<Void> thenRunAsync(Runnable action,Executor executor);
thenRun它的入参是一个Runnable的实例,表示当得到上一步的结果时的操作。
例如:
@Test
public void thenRun(){
CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "hello";
}).thenRun(() -> System.out.println("hello world"));
while (true){}
}
结果为:
hello world
- 结合两个CompletionStage的结果,进行转化后返回
public <U,V> CompletionStage<V> thenCombine(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn);
public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn);
public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn,Executor executor);
它需要原来的处理返回值,并且other代表的CompletionStage也要返回值之后,利用这两个返回值,进行转换后返回指定类型的值。
例如:
@Test
public void thenCombine() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "hello";
}).thenCombine(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "world";
}), (s1, s2) -> s1 + " " + s2).join();
System.out.println(result);
}
结果为:
hello world
- 结合两个CompletionStage的结果,进行消耗
public <U> CompletionStage<Void> thenAcceptBoth(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action);
public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action);
public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action, Executor executor);
它需要原来的处理返回值,并且other代表的CompletionStage也要返回值之后,利用这两个返回值,进行消耗。
例如:
@Test
public void thenAcceptBoth() {
CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "hello";
}).thenAcceptBoth(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "world";
}), (s1, s2) -> System.out.println(s1 + " " + s2));
while (true){}
}
结果为:
hello world
- 在两个CompletionStage都运行完执行。
public CompletionStage<Void> runAfterBoth(CompletionStage<?> other,Runnable action);
public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other,Runnable action);
public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other,Runnable action,Executor executor);
不关心这两个CompletionStage的结果,只关心这两个CompletionStage执行完毕,之后在进行操作(Runnable)。
例如:
@Test
public void runAfterBoth(){
CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s1";
}).runAfterBothAsync(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s2";
}), () -> System.out.println("hello world"));
while (true){}
}
结果为
hello world
- 两个CompletionStage,谁计算的快,我就用那个CompletionStage的结果进行下一步的转化操作。
public <U> CompletionStage<U> applyToEither(CompletionStage<? extends T> other,Function<? super T, U> fn);
public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn);
public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn,Executor executor);
我们现实开发场景中,总会碰到有两种渠道完成同一个事情,所以就可以调用这个方法,找一个最快的结果进行处理。
例如:
@Test
public void applyToEither() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s1";
}).applyToEither(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "hello world";
}), s -> s).join();
System.out.println(result);
}
结果为:
hello world
- 两个CompletionStage,谁计算的快,我就用那个CompletionStage的结果进行下一步的消耗操作。
public CompletionStage<Void> acceptEither(CompletionStage<? extends T> other,Consumer<? super T> action);
public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other,Consumer<? super T> action);
public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other,Consumer<? super T> action,Executor executor);
例如:
@Test
public void acceptEither() {
CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s1";
}).acceptEither(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "hello world";
}), System.out::println);
while (true){}
}
结果为:
hello world
- 两个CompletionStage,任何一个完成了都会执行下一步的操作(Runnable)。
public CompletionStage<Void> runAfterEither(CompletionStage<?> other,Runnable action);
public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other,Runnable action);
public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other,Runnable action,Executor executor);
例如:
@Test
public void runAfterEither() {
CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s1";
}).runAfterEither(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s2";
}), () -> System.out.println("hello world"));
while (true) {
}
}
结果为:
hello world
- 当运行时出现了异常,可以通过exceptionally进行补偿。
public CompletionStage<T> exceptionally(Function<Throwable, ? extends T> fn);
例如:
@Test
public void exceptionally() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
if (1 == 1) {
throw new RuntimeException("测试一下异常情况");
}
return "s1";
}).exceptionally(e -> {
System.out.println(e.getMessage());
return "hello world";
}).join();
System.out.println(result);
}
结果为:
java.lang.RuntimeException: 测试一下异常情况
hello world
- 当运行完成时,对结果的记录。这里的完成时有两种情况,一种是正常执行,返回值。另外一种是遇到异常抛出造成程序的中断。这里为什么要说成记录,因为这几个方法都会返回CompletableFuture,当Action执行完毕后它的结果返回原始的CompletableFuture的计算结果或者返回异常。所以不会对结果产生任何的作用。
public CompletionStage<T> whenComplete(BiConsumer<? super T, ? super Throwable> action);
public CompletionStage<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action);
public CompletionStage<T> whenCompleteAsync(BiConsumer<? super T, ? super Throwable> action,Executor executor);
例如:
@Test
public void whenComplete() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
if (1 == 1) {
throw new RuntimeException("测试一下异常情况");
}
return "s1";
}).whenComplete((s, t) -> {
System.out.println(s);
System.out.println(t.getMessage());
}).exceptionally(e -> {
System.out.println(e.getMessage());
return "hello world";
}).join();
System.out.println(result);
}
结果为:
null
java.lang.RuntimeException: 测试一下异常情况
java.lang.RuntimeException: 测试一下异常情况
hello world
这里也可以看出,如果使用了exceptionally,就会对最终的结果产生影响,它没有口子返回如果没有异常时的正确的值,这也就引出下面我们要介绍的handle。
- 运行完成时,对结果的处理。这里的完成时有两种情况,一种是正常执行,返回值。另外一种是遇到异常抛出造成程序的中断。
public <U> CompletionStage<U> handle(BiFunction<? super T, Throwable, ? extends U> fn);
public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn);
public <U> CompletionStage<U> handleAsync(BiFunction<? super T, Throwable, ? extends U> fn,Executor executor);
例如:
出现异常时
@Test
public void handle() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//出现异常
if (1 == 1) {
throw new RuntimeException("测试一下异常情况");
}
return "s1";
}).handle((s, t) -> {
if (t != null) {
return "hello world";
}
return s;
}).join();
System.out.println(result);
}
结果为:
hello world
未出现异常时
@Test
public void handle() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s1";
}).handle((s, t) -> {
if (t != null) {
return "hello world";
}
return s;
}).join();
System.out.println(result);
}
结果为:
s1
上面就是CompletionStage接口中方法的使用实例,CompletableFuture同样也同样实现了Future,所以也同样可以使用get进行阻塞获取值,总的来说,CompletableFuture使用起来还是比较爽的,看起来也比较优雅一点。