tensorflow-gpu运行环境的cudnn版本低于编译环境的cudnn版本

当通过pip安装的tensorflow-gpu与运行环境中的cudnn版本不一致时,会导致训练模型时报错。解决方法是利用conda命令行工具,只需一条指令即可自动安装匹配版本的tensorflow-gpu和cudnn,无需root权限和手动编译。此方法特别适合没有权限升级系统库或安装高版本cudnn的情况,但需要确保网络连接畅通。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:
通过pip install tensorflow-gpuxxxx.whl命令安装tensorflow-gpu,tensorflow-gpu安装好了,import tensorflow也没有问题,但是在训练模型的时候报错。
在这里插入图片描述
报错的关键信息是:
Loaded runtime CuDNN library: 7.3.1 but source was compiled with: 7.6.0.
那是因为tensorflow的whl安装包的编译环境的cudnn版本是7.6.0,而当前的运行环境的cudnn的版本是7.3.1,编译环境的版本高于运行环境的版本。
考虑过安装高版本的cudnn,但是没有root权限,大概很麻烦。考虑过在本地编译tensorflow,但是需要bazel命令,没有root权限安装不了,选择放弃。

解决办法:
用conda命令安装!一条命令搞定!
conda install tensorflow-gpu==xxxx
conda会自动把相应版本的cudnn给安装了。不过,没有conda环境的话得先安装conda,另外,有一点很重要!需要联网!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值