AdaIN

AdaIN是一种在实时风格迁移中使用的技巧,它通过结合内容图像和风格图像的通道均值与标准差来调整内容特征。首先,利用VGG网络从原图和风格图中提取特征,然后计算特征图的通道均值和标准差。AdaIN公式将内容特征按通道标准化并乘以风格特征的标准差,再加上风格特征的均值,实现风格的迁移。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AdaIN的全名是Adaptive Instance Normalization,源自风格迁移的论文Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
在这里插入图片描述

假设原图和风格图经过VGG进行特征提取后得到shape分别为CxHxW和CxH‘xW’的特征图c和s,AdaIN的计算如下:

A d a I N ( c , s ) = σ ( s ) ( c − μ ( c ) σ ( c ) ) + μ ( s ) AdaIN(c,s)=\sigma(s)\left(\frac{c-\mu(c)}{\sigma(c)}\right)+\mu(s) AdaIN(c,s)=σ(s)(σ(c)cμ(c))+μ(s)

其中, μ ( ) \mu() μ() σ ( ) \sigma() σ()都是channel-wise的,也就是对特征图每个通道求均值和标准差,从而shape=CxHxW的特征图会得到shape=Cx1x1的均值和标准差。

### PyTorch-AdaIN 实现 `PyTorch-AdaIN` 是一种基于 `Adaptive Instance Normalization (AdaIN)` 技术的实时风格迁移方法,最初由 Huang 等人在 ICCV 2017 上提出。以下是其实现的核心部分: #### 核心函数定义 `AdaIN` 层的主要功能是对输入的内容特征图和样式特征图进行自适应实例归一化处理。其计算过程可以分为以下几个阶段:标准化内容特征图并缩放平移以匹配样式的均值和方差。 下面是具体的代码实现[^2]: ```python import torch from torchvision import models from torch.nn.functional import instance_norm class AdaIN(torch.nn.Module): def __init__(self, eps=1e-5): super(AdaIN, self).__init__() self.eps = eps def forward(self, content_features, style_features): # Normalize the content features normalized_content = instance_norm(content_features) # Calculate mean and std of style features batch_size, channels, height, width = style_features.size() style_mean = style_features.view(batch_size, channels, -1).mean(dim=2).view(batch_size, channels, 1, 1) style_std = style_features.view(batch_size, channels, -1).std(dim=2).view(batch_size, channels, 1, 1) + self.eps # Apply scaling and shifting using style statistics adain_result = style_std * normalized_content + style_mean return adain_result ``` 此模块实现了 AdaIN 的核心逻辑,其中 `instance_norm` 函数负责对内容特征图进行归一化操作,随后通过样式的均值和标准差对其进行重新调整。 #### 风格迁移网络结构 完整的风格迁移流程通常涉及编码器、解码器以及上述提到的 AdaIN 模块。以下是一个简单的框架示例: ```python class StyleTransferNet(torch.nn.Module): def __init__(self): super(StyleTransferNet, self).__init__() # Load a pre-trained VGG network as encoder vgg = models.vgg19(pretrained=True).features self.encoder = torch.nn.Sequential(*list(vgg.children())[:18]) # Truncate to conv4_1 layer # Define decoder layers self.decoder = torch.nn.Sequential( ConvLayer(512, 256), ConvLayer(256, 128), ConvLayer(128, 64), torch.nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1) ) # Initialize AdaIN module self.adain = AdaIN() def encode(self, input_image): return self.encoder(input_image) def decode(self, encoded_features): return self.decoder(encoded_features) def forward(self, content_image, style_image): content_encoded = self.encode(content_image) style_encoded = self.encode(style_image) stylized_features = self.adain(content_encoded, style_encoded) output_image = self.decode(stylized_features) return output_image ``` 在此代码片段中,`StyleTransferNet` 类封装了一个端到端的风格迁移管道。它使用预训练好的 VGG-19 网络作为编码器提取高级语义特征,并通过自定义解码器重建图像。 --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值