java使用链式栈实现递归和非递归求解迷宫路径

本文通过一个生动的递归概念解释,展示了如何使用递归和非递归方法解决迷宫路径问题。非递归方法利用链式栈进行深度优先搜索,而递归方法通过判断不同方向的可行性来寻找所有可能的通路。文章提供了详细的代码实现,并附带了测试案例,展示了有无通路的情况。
摘要由CSDN通过智能技术生成

什么是递归呢:
  简而言之,当你面前有一扇门,你打开面前这扇门,看到屋里面还有一扇门,你走过去,发现手中的钥匙还可以打开它,你推开门,发现里面还有一扇门,你继续打开它。若干次之后,你打开面前的门后,发现只有一间屋子,没有门了。然后,你开始原路返回,每走回一间屋子,你数一次,走到入口的时候,你可以回答出你到底用这你把钥匙打开了几扇门,这就是递归。

现在我们使用迷宫路径求解,进一步理解递归的含义。

需求:

  给定任意设定的迷宫,左上角为入口,有下角为出口,判断该迷宫是否存在通路,若有,则非递归求解迷宫的一条通路以及三元组路径,并且递归求解迷宫的所有通路以及对应的三元组路径;若无,则提示该迷宫无路。


以下是类的设计:

类的设计


以下是非递归求解的流程及主要代码:

非递归流程图
/*
非递归求解迷宫一条通路及三元组路径
 */
public class MiGong1 {
    private int[][] maze;
    private int row, col;

    public int[][] getMaze() {
        return maze;
    }

    //定义链式栈
    SingleLinkedListStack<Coord1> singleStack;
    //进入下一个节点的四个方向,分别是(右、下、左、上)的优先顺序
    Coord1[] move = {new Coord1(0, 1), new Coord1(1, 0),
            new Coord1(0, -1), new Coord1(-1, 0)};

    public MiGong1(int[][] map) {
        //创建链式栈
        singleStack = new SingleLinkedListStack<>();
        //索引按照正常坐标形式
        row = map.length + 2;
        col = map[0].length + 2;
        maze = new int[row][col];
        //将迷宫map四周都增加一行0和一列0,得到maze
        for (int x = 1; x < row - 1; x++) {
            for (int y = 1; y < col - 1; y++) {
                maze[x][y] = map[x - 1][y - 1];
            }
        }
        //将四周边缘的0变为1(障碍物)
        for (int i = 0; i < maze.length; i++) {
            maze[i][0] = 1;
            maze[i][maze[0].length - 1] = 1;
        }
        for (int j = 0; j < maze[0].length; j++) {
            maze[0][j] = 1;
            maze[maze.length - 1][j] = 1;
        }
    }

    //寻找判断是否有路径
    public boolean findPath(int i, int j, int[][] maze, int maxRow, int maxColumn) {
        int x, y, dNo, nextX, nextY;//x,y表示当前节点坐标,dNo表示移动方向,nextX,nextY表示下一个节点坐标
        Coord1 temp = new Coord1(i, j, null, -1);//创建起点坐标,这里dNo=-1为了适应下面的temp.dNo+1,满足初始情况
        singleStack.push(temp);//将入口进栈

        //深度优先搜索
        while (singleStack.size() != 0) {
            temp = singleStack.pop();//三元组出栈
            System.out.printf("(%d,%d,%s)出栈\n",temp.x,temp.y,temp.d);
            maze[temp.x][temp.y] = 0;//走不通,迷宫矩阵元素恢复为0
            //坐标替换
            x = temp.x;
            y = temp.y;
            dNo = temp.dNo + 1;//这里加一,走下一个方向

            //当一条路走不通时,下面的while循环结束,后面循环将这条死路的三元组坐标出栈,矩阵元素恢复为0,
            //直到可以再次进入下面的while循环,到出口为止
            while (dNo < 4) {
                nextX = x + move[dNo].x;
                nextY = y + move[dNo].y;
                if (maze[nextX][nextY] == 0) {//下一个坐标可走
                    maze[x][y] = 6;//前一个坐标设为6
                    //看走到下一个坐标是哪个方向
                    if (dNo == 0) {
                        temp = new Coord1(x, y, "右", dNo);
                    } else if (dNo == 1) {
                        temp = new Coord1(x, y, "下", dNo);
                    } else if (dNo == 2) {
                        temp = new Coord1(x, y, "左", dNo);
                    } else if (dNo == 3) {
                        temp = new Coord1(x, y, "上", dNo);
                    }
                    singleStack.push(temp);//三元组进栈
                    System.out.printf("(%d,%d,%s)入栈\n", singleStack.peek().x, singleStack.peek().y, singleStack.peek().d);

                    //坐标替换,进行下一次循环寻路
                    x = nextX;
                    y = nextY;

                    //如果找到通路,将结束循环
                    if (x == maxRow - 2 && y == maxColumn - 2) {
                        maze[x][y] = 66;
                        temp = new Coord1(x, y, "end", -1);
                        singleStack.push(temp);
                        return true;//说迷宫有通路
                    } else {
                        dNo = 0;//没到出口,继续遍历
                    }
                } else {
                    dNo++; //使用下一个移动方向
                }
            }
        }
        return false;//到不了出口,说明找不到通路
    }
}


以下是递归求解的流程及主要代码:

递归流程图
/*
递归求解迷宫所有通路及三元组路径
 */
public class MiGong2 extends MiGong1 {
    public MiGong2(int[][] map) {
        super(map);
    }

    public boolean canMove(int x, int y, int nextX, int nextY, int[][] maze, int maxRow, int maxColumn) {

        //到达最左边或最右边
        if (nextX < 1 || nextY < 1 || nextX > maxRow - 2 || nextY > maxColumn - 2) {
            return false;
        }
        //到墙
        if (maze[nextX][nextY] == 1) {
            return false;
        }
        //避免走已经走过的路
        if (maze[nextX][nextY] == 6) {
            return false;
        }
        return true;
    }

    public void findAllPath(int x, int y, int[][] maze, int maxRow, int maxColumn) {
        Coord1 temp;
        // 递归出口(如果到达右下角)
        if (x == maxRow - 2 && y == maxColumn - 2) {
            maze[x][y] = 66;//出口为设为66
            temp = new Coord1(x, y, "end");
            singleStack.push(temp);//将出口push进栈

            printPath(maze, maxRow, maxColumn);//输出第i条路径和三元组路径

            singleStack.pop();//输出所有路径后要将出口pop出来,以便后面的通路求解
            return;
        }
        //向右走
        if (canMove(x, y, x, y + 1, maze, maxRow, maxColumn)) {//如果下一个节点能走,将前一个节点设置为6
            maze[x][y] = 6;
            temp = new Coord1(x, y, "右");
            singleStack.push(temp);
            //递归,从下一个节点继续寻路
            findAllPath(x, y + 1, maze, maxRow, maxColumn);
            //如果路走不通,将恢复原来的样子
            singleStack.pop();
            maze[x][y] = 0;
        }
        //向下走
        if (canMove(x, y, x + 1, y, maze, maxRow, maxColumn)) {//如果下一个节点能走,将前一个节点设置为6
            maze[x][y] = 6;
            temp = new Coord1(x, y, "下");
            singleStack.push(temp);
            //递归,从下一个节点继续寻路
            findAllPath(x + 1, y, maze, maxRow, maxColumn);
            //如果路走不通,将恢复原来的样子
            singleStack.pop();
            maze[x][y] = 0;
        }
        //向左走
        if (canMove(x, y, x, y - 1, maze, maxRow, maxColumn)) {//如果下一个节点能走,将前一个节点设置为6
            maze[x][y] = 6;
            temp = new Coord1(x, y, "左");
            singleStack.push(temp);
            //递归,从下一个节点继续寻路
            findAllPath(x, y - 1, maze, maxRow, maxColumn);
            //如果路走不通,将恢复原来的样子
            singleStack.pop();
            maze[x][y] = 0;
        }
        //向上走
        if (canMove(x, y, x - 1, y, maze, maxRow, maxColumn)) {//如果下一个节点能走,将前一个节点设置为6
            maze[x][y] = 6;
            temp = new Coord1(x, y, "上");
            singleStack.push(temp);
            //递归,从下一个节点继续寻路
            findAllPath(x - 1, y, maze, maxRow, maxColumn);
            //如果路走不通,将恢复原来的样子
            singleStack.pop();
            maze[x][y] = 0;
        }
    }
}

一些测试图:

迷宫矩阵及通路矩阵
三元组路径
迷宫所有通路及三元组路径
存在通路
不存在通路


需要完整代码可以去我的资源下载!!!
附链接:

maze_code

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值