- 博客(6)
- 收藏
- 关注
原创 【2021-2022 春学期】人工智能-作业6:CNN实现XO识别
文章目录一、数据集二、构建模型三、训练模型四、测试训练好的模型五、计算模型准确率六、查看训练好模型的特征图七、查看卷积核八、源码1.训练模型源码2.测试模型源码总结一、数据集二、构建模型class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 9, 3) self.maxpool = nn.MaxPool2
2022-05-23 16:23:27 291
原创 人工智能-作业5:卷积-池化-激活
文章目录前言一、 For循环版本:手工实现 卷积-池化-激活1.代码:2.运行结果二、Pytorch版本:调用函数完成 卷积-池化-激活1.代码:2.运行结果三、可视化:了解数字与图像之间的关系1.代码2.运行结果前言一、 For循环版本:手工实现 卷积-池化-激活1.代码:import numpy as npx = np.array([[-1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, 1, -1, -1, -1, -1, -
2022-05-18 15:30:10 172
原创 人工智能 作业4:CNN - 卷积
目录前言一、概念1.卷积:2.卷积核3.多通道4.特征图5.特征选择二、不同卷积核作用和原理1.边缘检测2.锐化3.模糊三、编程实现1.实现灰度图的边缘检测、锐化、模糊。a.边缘检测b.锐化c.模糊2.调整经典卷积核参数3.使用不同尺寸的图片4.探索更多类型卷积核5.尝试彩色图片边缘检测总结前言例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。一、概念1.卷积:在泛函分析中,卷积、旋积或褶积是通过两个函数f和g生成第三个函数
2022-05-11 23:08:43 594
原创 【人工智能-作业3:例题程序复现 PyTorch版】
目录一、使用pytorch复现课上例题。二、 对比【作业3】和【作业2】的程序,观察两种方法结果是否相同?如果不同,哪个正确?三、【作业2】程序更新四、对比【作业2】与【作业3】的反向传播的实现方法。总结并陈述。五、激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。六、激活函数Sigmoid改变为Relu,观察、总结并陈述。七、损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。八、损失函数MSE改变为交叉熵,观察、总结
2022-05-08 17:01:01 688
原创 人工智能-作业2:例题程序复现
前言误差反向传播法是Rumelhart等在1986年提出的,即BP(error BackPropagation)法影响最为广泛,也称BP算法。直到今天,BP算法仍然是自动控制上最重要、应用最多的有效算法。是用于多层神经网络训练的著名算法,有理论依据坚实、推导过程严谨、物理概念清楚、通用性强等优点。但是,人们在使用中发现BP算法存在收敛速度缓慢、易陷入局部极小等缺点。目标:通过反向传播优化权值输入值:x1, x2 = 0.5,0.3输出值:y1, y2 =0.23, -0.07激活函数:sigm
2022-04-30 19:51:07 200
原创 【人工智能基础作业1:PyTorch实现反向传播】
一、安装python环境事先提前安装二、安装PyCharm2020双击软件后选择“Do not…"将【jetbrains-agent】文件拖动到【PyCharm】界面复制resources_zh_CN_PyCharm_2020.1_r1右键软件选择文件所在位置,点击文件夹路径中的PyCharm 2020.1 x64,双击打开lib,右键粘贴汉化成功3.安装PyTorch复制安装命令在资源管理器的地址栏输入%appdata%后回车,新建一个pip文件夹,在pip文件夹里面新
2022-04-29 21:46:38 1536
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人