【人工智能-作业3:例题程序复现 PyTorch版】

一、使用pytorch复现课上例题。

在这里插入图片描述

二、 对比【作业3】和【作业2】的程序,观察两种方法结果是否相同?如果不同,哪个正确?

两种方法的不同,作业3的正确

三、【作业2】程序更新

import torch

x1,x2 = torch.Tensor([o.5]), torch.Tensor([o.3])
y1, y2 = torch.Tensor([0.23]),torch.Tensor([-0.07])
print( "=====输入值:x1,x2;真实输出值:y1, y2=====")
print(x1, x2, y1, y2)

w1,w2,w3, w4, w5, w6, w7,w8 = torch.Tensor([0.2]), torch.Tensor([ -0.4]), torch.Tensor([0.5]),tonch. Tensor([0.6]), torch.Trensor([ 0.1]), torch. Tensor([ -0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8])

wl.requires_grad = True
w2.requires_grad = True
w3.requires_grad = True
w4.requires_grad = True
w5.requires_grad = True
w6 . requires_grad = True
w7.requires_grad = True
w8.requires_grad = True

def sigmoid(z):
      a = 1 / (1 + torch.exp(-z))
      return a

def sigmoid(z):
      a= 1 /(1 + torch.exp(-z))
      return a

def forward_propagate(x1,x2):
      in_h1 = w1 * x1 + w3* x2
      out_h1 = sigmoid(in_h1) 
      in_h2 = w2 * x1 + w4* x2
      out_h2 = sigmoid(in_h2)
      
      in_o1 = w5* out_h1 + w7 * out_h2
      out_o1 = sigmoid(in_o1) 
      in_o2 = w6 * out_h1 + w8* out_h2
      out_o2 = sigmoid(in_o2)

      print("正向计算: o1 ,o2")
      print(out_o1.data,out_o2.data)
      return out_o1,out_o2
      
def loss_fuction(x1,x2, y1, y2):
      y1_pred, y2_pred = forward_propagate(x1,x2)
      loss = (1/ 2) *(y1_pred - y1)** 2+(1/2)*(y2_pred - y2)**2
      print("损失函数(均方误差):",loss.item())
      return loss

def update_w(w1,w2,w3,w4,w5,w6, w7, w8):
      step = 1
      w1.data = w1.data - step * w1.grad.data
      w2.data = w2.data - step * w2.grad.data
      w3.data = w3.data - step * w3.grad.data
      w4.data = w4.data - step * w4.grad.data
      w5.data = w5.data - step * w5.grad.data
      w6.data = w6.data - step * w6.grad.data
      w7.data = w7.data - step * w7.grad.data
      w8.data = w8.data - step * w8.grad.data
      
      w1.grad.data.zero_()
      w2.grad.data.zero_()
      w3.grad.data.zero_()
      w4.grad.data.zero_()
      w5.grad.data.zero_()
      w6.grad.data.zero_()
      w7.grad.data.zero_()
      w8.grad.data.zero_()
      return w1, w2, w3,w4, w5,w6, w7, w8

if _name__ -= "_main__" :
      print( "=====更新前的权值=====")
      print(w1.data,w2.data,w3.data, w4.data,w5.data,w6.data, w7.data,w8.data)

for i in range(10):
     print("\n=====第"+str(i) +"轮=====")
     L = loss_fuction(x1, x2, y1, y2)[
     L.backward()
     print( "grad w: ", round(w1.grad.item(), 2),round(w2.grad. item(),2),                                  round(w3.grad.item(),2),round(w4.grad.item(),2),round(w5 .grad.item(),2),round(w6.grad.item(),2), round(w7 .grad.item(),2}round(w8.grad.item(),2))
     w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5,w6, w7, w8)

print("更新后的权值")
print(w1.data,w2.data,w3.data,w4.data, w5.data,w6.data, w7.data,w8.data)

四、对比【作业2】与【作业3】的反向传播的实现方法。总结并陈述。

第一轮反向传播中,手动计算和使用PyTorch计算的权重向量的梯度值只有w1和w3互为相反数,其他相同。

五、激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。

def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = torch.sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = torch.sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2

Sigmoid函数的倒数是本身,在反向传播的求导中起到了重要作用

六、激活函数Sigmoid改变为Relu,观察、总结并陈述。

def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = Relu(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = Relu(in_h2)
    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = Relu(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = Relu(in_o2)
 
    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)
 
    return out_o1, out_o2

Relu函数的表达式为:f(x) = max(0,x),是分段的线性函数,把所有的负值都变为0,使正值不变

七、损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。

def loss_fuction(x1, x2, y1, y2):  # 损失函数
    # torch.nn.CrossEntropyLoss交叉熵
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss_f = torch.nn.MSELoss()
    # loss_f = torch.nn.CrossEntropyLoss交叉熵
    y_pred = torch.cat((y1_pred, y2_pred), dim=0)
    y = torch.cat((y1, y2), dim=0)
    loss = loss_f(y_pred,y)
    print("损失函数(均方误差):", loss.item())
    return loss

MSELoss是预测值与真实值之差的平方和的平均值

八、损失函数MSE改变为交叉熵,观察、总结并陈述。

def loss_fuction(x1, x2, y1, y2):  # 损失函数
    # torch.nn.CrossEntropyLoss交叉熵
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    # loss_f = torch.nn.MSELoss()
    loss_f = torch.nn.CrossEntropyLoss
    y_pred = torch.cat((y1_pred, y2_pred), dim=0)
    y = torch.cat((y1, y2), dim=0)
    loss = loss_f(y_pred,y)
    print("损失函数(均方误差):", loss.item())
    return loss

九、改变步长,训练次数,观察、总结并陈述。

若训练次数为5,测试不同步长时均方误差的值发现,步长越大,均方误差越小;若步长为1,测试不同训练次数时均方误差的值发现,训练次数越大,均方误差越小

十、权值w1-w8初始值换为随机数,对比【作业2】指定权值结果,观察、总结并陈述。

当权重换为随机数时,模型依旧能收敛,影响不大。

总结

反向传播算法可以看成是梯度下降法在神经网络中的变形版本,它的原理主要利用了链式法则,通过递归的方式求解微分。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值