豆瓣短评大数据分析:探索用户观影趋势与情感倾向

本文通过Python编程,对豆瓣短评数据进行IP属地分布、评分偏好和情感倾向分析,包括使用MapReduce技术统计评分分布,以及生成词云图展示高频关键词。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

豆瓣短评大数据分析:探索用户观影趋势与情感倾向

在本文中,我们将结合Python编程和大数据分析的技术,对豆瓣短评数据进行探索性分析,以洞察用户的地域分布、评分偏好以及对影片的情感倾向。

1. 评论者IP属地分布分析

我们首先利用Python的Pandas库加载豆瓣短评数据,并统计不同IP属地的评论数量。接下来,我们使用Matplotlib库绘制饼图,展示前十个IP属地的评论数量占比。

import pandas as pd
import matplotlib.pyplot as plt

# 加载豆瓣短评数据
data = pd.read_csv('豆瓣短评.csv')

# 统计不同IP属地的评论数量
ip_counts = data['评论者IP属地'].value_counts()

# 选择前10个IP属地进行绘制
top_10_ip = ip_counts.head(10)

# 绘制饼图
plt.figure(figsize=(8, 8))
plt.rcParams['font.family'] = 'Arial Unicode MS'
plt.pie(top_10_ip, labels=top_10_ip.index, autopct='%1.1f%%', startangle=140)
plt.title('评论者IP属地分布(前10)')
plt.axis('equal')
plt.show()

import pandas as pd
import matplotlib.pyplot as plt

# 加载CSV文件数据到DataFrame
data = pd
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值