反向传播(BP)

创作背景

最近要学学 反向传播BP),写篇博客记录一下。

知识补充

误差反向传播,简称BPBack Propagation)。
机器学习过程可分为 正向传播反向传播

  • 正向传播:输入信息从输入层经隐层处理,传至输出层。每层神经元(节点)的状态只影响 下一层 神经元的状态。
  • 反向传播:将误差信号 沿原来通路返回修改各层权重值使误差信号最小,得到 最佳(较佳)参数

流程图

  • 首先画一下流程图(用 mermaid 画出来效果看着不行,就用的 PPT 的形状一个一个画)

  • 正向传播
    在这里插入图片描述

  • 反向传播
    在这里插入图片描述

公式

  • 正向传播
    y ^ = w 1 x 2 + w 2 x + b r = y ^ − y l o s s = r 2 \hat{y}={w}_{1}{x}^{2}+{w}_{2}x+b \\ r = \hat{y} - y \\ loss = {r}^{2} y^=w1x2+w2x+br=y^yloss=r2
  • 反向传播,即 损失对各权重求偏导
    ∂ l o s s ∂ y ^ = ∂ l o s s ∂ r ∗ ∂ r ∂ y ^ = 2 r = 2 ( y ^ − y ) = 2 ( w 1 x 2 + w 2 x + b − y ) \frac{\partial loss}{\partial \hat{y}}=\frac{\partial loss}{\partial r}*\frac{\partial r}{\partial \hat{y}}=2r \\ =2(\hat{y}-y)=2({w}_{1}{x}^{2}+{w}_{2}x+b-y) y^loss=rlossy^r=2r=2(y^y)=2(w1x2+w2x+by)
    ∂ l o s s ∂ w 1 = ∂ l o s s ∂ y ^ ∗ ∂ y ^ ∂ w 1 = 2 r ∗ x 2 = 2 x 2 ( w 1 x 2 + w 2 x + b − y ) \frac{\partial loss}{\partial {w}_{1}}=\frac{\partial loss}{\partial \hat{y}}*\frac{\partial \hat{y}}{\partial {w}_{1}}=2r*{x}^{2}=2{x}^{2}({w}_{1}{x}^{2}+{w}_{2}x+b-y) w1loss=y^lossw1y^=2rx2=2x2(w1x2+w2x+by)
    ∂ l o s s ∂ w 2 = ∂ l o s s ∂ y ^ ∗ ∂ y ^ ∂ w 2 = 2 r ∗ x = 2 x ( w 1 x 2 + w 2 x + b − y ) \frac{\partial loss}{\partial {w}_{2}}=\frac{\partial loss}{\partial \hat{y}}*\frac{\partial \hat{y}}{\partial {w}_{2}}=2r*{x}=2{x}({w}_{1}{x}^{2}+{w}_{2}x+b-y) w2loss=y^lossw2y^=2rx=2x(w1x2+w2x+by)
    ∂ l o s s ∂ b = ∂ l o s s ∂ y ^ ∗ ∂ y ^ ∂ b = 2 r = 2 ( w 1 x 2 + w 2 x + b − y ) \frac{\partial loss}{\partial b}=\frac{\partial loss}{\partial \hat{y}}*\frac{\partial \hat{y}}{\partial b}=2r=2({w}_{1}{x}^{2}+{w}_{2}x+b-y) bloss=y^lossby^=2r=2(w1x2+w2x+by)

验证公式

计算模型 y ^ = w 1 x 2 + w 2 x + b \hat{y}={w}_{1}{x}^{2}+{w}_{2}x+b y^=w1x2+w2x+b损失对各权重的梯度

import torch

x = 1.0
y = 2.0
w = torch.Tensor([1.0, 2.0])
b = torch.Tensor([2.0])
w.requires_grad = True
b.requires_grad = True

def forward(x):
    return w[0] * x ** 2 + w[1] * x + b
  • 用公式计算
In[]:	w1_ = 2 * x ** 2 * (forward(x).item() - y)
		w2_ = 2 * x * (forward(x).item() - y)
		b_ = 2 * (forward(x).item() - y)
		w1_, w2_, b_
Out[]:	(6.0, 6.0, 6.0)
  • torch 计算梯度
In[]:	loss = (forward(x) - y) ** 2
		loss.backward()
		w.grad[0].item(), w.grad[1].item(), b.grad.item()
Out[]:	(6.0, 6.0, 6.0)
  • 结果正确



结尾

以上就是我要分享的内容,因为学识尚浅,会有不足,还请各位大佬指正。
有什么问题也可在评论区留言。
在这里插入图片描述

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
反向传播(backpropagation,简称BP)是一种用于训练神经网络的算法,其主要目的是通过计算误差并反向传播来更新每个神经元之间的权重。 以下是一个简单的反向传播算法的代码示例: ```python # 初始化网络参数 input_layer_size = 2 hidden_layer_size = 3 output_layer_size = 1 # 初始化权重和偏差 W1 = np.random.randn(input_layer_size, hidden_layer_size) b1 = np.zeros((1, hidden_layer_size)) W2 = np.random.randn(hidden_layer_size, output_layer_size) b2 = np.zeros((1, output_layer_size)) # 定义激活函数 def sigmoid(z): return 1 / (1 + np.exp(-z)) # 定义反向传播算法 def backpropagation(X, y, W1, b1, W2, b2, learning_rate): # 前向传播 z1 = np.dot(X, W1) + b1 a1 = sigmoid(z1) z2 = np.dot(a1, W2) + b2 y_pred = sigmoid(z2) # 计算误差 delta3 = y_pred - y # 反向传播 delta2 = np.dot(delta3, W2.T) * (a1 * (1 - a1)) # 更新权重和偏差 dW2 = np.dot(a1.T, delta3) db2 = np.sum(delta3, axis=0, keepdims=True) dW1 = np.dot(X.T, delta2) db1 = np.sum(delta2, axis=0) W2 -= learning_rate * dW2 b2 -= learning_rate * db2 W1 -= learning_rate * dW1 b1 -= learning_rate * db1 return W1, b1, W2, b2 # 训练模型 for i in range(1000): W1, b1, W2, b2 = backpropagation(X, y, W1, b1, W2, b2, 0.1) # 预测结果 z1 = np.dot(X, W1) + b1 a1 = sigmoid(z1) z2 = np.dot(a1, W2) + b2 y_pred = sigmoid(z2) ``` 这段代码假设我们要训练一个具有一个隐藏层、2个输入节点和1个输出节点的神经网络。我们首先随机初始化权重和偏差,然后定义了一个`sigmoid`激活函数。然后我们定义了一个`backpropagation`函数,该函数接收输入数据`X`和目标输出`y`,以及当前的权重和偏差,并使用反向传播算法来更新权重和偏差。在训练模型时,我们重复调用`backpropagation`函数,直到模型收敛。最后,我们使用训练好的模型来预测新的输入数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值