给定一张包含N个点、N-1条边的无向连通图,节点从1到N编号,每条边的长度均为1。假设你从1号节点出发并打算遍历所有节点,那么总路程至少是多少?
输入描述:
第一行包含一个整数N,1≤N≤10^5。 接下来N-1行,每行包含两个整数X和Y,表示X号节点和Y号节点之间有一条边,1≤X,Y≤N。
输出描述:
输出总路程的最小值。
输入例子1:
4 1 2 1 3 3 4
输出例子1:
4
python代码:
n=int(input())
graph={}
for i in range(1,n+1):
graph[i]=[]
for _ in range(n-1):
f=[int(x) for x in input().split()]
graph[f[0]].append(f[1])
graph[f[1]].append(f[0])
def dfs(x,old,w):
global ans
for i in range(len(graph[x])):
if (graph[x][i]==old):
continue
dfs(graph[x][i],x,w+1)
ans=max(ans,w)
return ans
ans=0
m=dfs(1,-1,0)
print((n-1)*2-m)
思路:首先,这个图可以看成一个树,它是一个没有环的,就是将从1出发的所有路径都遍历一遍,寻找一条最长的,让它只走一遍,这样我们得到的答案就是最小的。牛客的通过率是66.7%,报数组越界错误。