《恐龙的兴衰》恐龙家族的演化历程

《恐龙的兴衰》详述了恐龙从三叠纪末期到白垩纪末期的演化历程,揭示了恐龙的分类、生态地位和灭绝原因。从恐龙的黎明到恐龙的称霸,再到恐龙遗产,恐龙如何从生物大灭绝中崛起,最终一部分演化为鸟类。本文介绍了恐龙的分类、特点,如蜥臀类、鸟臀类和兽脚类,并探讨了恐龙与环境、竞争物种的关系,以及恐龙在生态系统中的重要地位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在陆续更新了一些博客后,笔者最近不想看计算机科学相关的书(看累了,想换换脑子)。正好最近了解到一本《恐龙的兴衰》,再加上笔者内心一直保持着年少时对恐龙的好奇和向往,就决定看这本书。
在这里插入图片描述

前言

《恐龙的兴衰》简述了恐龙家族的演化历程,时间跨度为整个中生代。该书中引用的是最新的恐龙研究成果,可能会打破大多数人对恐龙的刻板印象。



中生代



三叠纪 侏罗纪 白垩纪

阶段
(亿年前)
2.52~2.47 2.47~2.37 2.37~2.01 2.01~1.74 1.74~1.64 1.64~1.45 1.45~1 1~0.66

古生代包括二叠纪及之前,新生代包括古近纪及之后。

注意:
(1)对古生物形象的复原总是充满着许多争议,且人们对恐龙的认识也是不断进步的,最新的研究成果可能会颠覆人们以往对恐龙的认知。本文出现的恐龙复原图仅供参考。
(2)除了形象,对古生物体型的推测也并不准确,很多书、电影和纪录片中对恐龙的复原仅代表一家之言。除了化石完整度非常高的物种,恐龙的体型参数仅供参考,不必较真。
(3)恐龙家族种类繁多,分类是很复杂的,笔者不是古生物研究工作者,本文出现的恐龙名可能是包含许多物种的大类,也可能特指某个物种。
(4)本文无法涵盖所有的恐龙种类,只列举了一部分种群。

恐龙的定义和分类

肉食性的巨齿龙和植食性的禽龙是于19世纪20年代发现的最早的两类恐龙。很早以前,恐龙就被定义为与禽龙或巨齿龙属于同一类群的一切生物,以及这两类恐龙共同祖先的所有后代

巨齿龙:
在这里插入图片描述
禽龙:
在这里插入图片描述

大部分恐龙只生活在陆地上,天上飞的翼龙类和海里的海爬类都不属于恐龙。

恐龙的种类繁多且不断有新的化石被发现,大体可以被分为两类:鸟臀类和蜥臀类。蜥臀类又被分为蜥脚类兽脚类。通常习惯把恐龙分为三类:

(1)鸟臀类:禽龙、肿头龙、三角龙、甲龙、剑龙等。

肿头龙:
在这里插入图片描述
三角龙:
在这里插入图片描述
甲龙:
在这里插入图片描述
剑龙:
在这里插入图片描述
(2)蜥脚类(长脖子植食恐龙):腕龙、梁龙、雷龙等。

腕龙:
在这里插入图片描述
梁龙:
在这里插入图片描述
雷龙(迷惑龙):
在这里插入图片描述
(3)兽脚类(食肉恐龙):腔骨龙、异特龙、暴龙、棘龙、伶盗龙、鸟类等。

腔骨龙:
在这里插入图片描述
异特龙:
在这里插入图片描述
暴龙
在这里插入图片描述
棘龙:

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值