梯度下降的收敛分析

本文深入探讨了梯度下降法的收敛分析,通过L-Lipschitz定理和凸函数性质,证明了在特定条件下,梯度下降法在经过k次迭代后,解与最优解的差距可以缩小到ε。详细阐述了定理一和定理二,并通过数学推导展示了梯度下降法如何确保每次迭代后的函数值不高于之前的函数值,从而逐步逼近最优解。
摘要由CSDN通过智能技术生成

梯度下降法

1、选择初始值 x 0 x_0 x0和步长 η \eta η

2、循环从1…n:

x i + 1 = x i + η ∇ f ( x ) \quad\quad x_{i+1}=x_i+\eta\nabla f(x) xi+1=xi+ηf(x)

这个就是典型的梯度下降法,也就是不断的循环,直到x收敛,找到最优的 x x x,那么迭代多少次才能收敛呢?
今天咱们就分析一下

梯度下降法的收敛分析

梯度下降法的收敛分析,我们常用的定理就是:

假设函数满足L-Lipscthitz条件,并且函数是凸函数 ,设定: x ∗ = a r g m a x f ( x ) x^*=argmaxf(x) x=argmaxf(x)那么对于步长 n t ≤ 1 L n_t\leq \dfrac{1}{L} ntL1:

f ( x k ) ≤ f ( x ∗ ) + ∣ ∣ x 0 − x ∗ ∣ ∣ 2 2 η t k f(x_k)\leq f(x^*)+\dfrac{||x_0-x^*||^2}{2\eta_tk} f(xk)f(x)+2ηtkx0x2

公式中L表示一个常数, k k k表示迭代的次数, x ∗ x^* x表示最优解,也就是随着迭代次数的增加, ∣ ∣ x 0 − x ∗ ∣ ∣ 2 2 η t k \dfrac{||x_0-x^*||^2}{2\eta_tk} 2ηtkx0x2越小表示我们的解也就越接近最优解,比如:第一次迭代 f ( x 1 ) ≤ f ( x ∗ ) + 20 f(x_1)\leq f(x^*)+20 f(x1)f(x)+20,第23次迭代: f ( x 23 ) ≤ f ( x ∗ ) + 0.1 f(x_{23})\leq f(x^*)+0.1 f(x23)f(x)+0.1我们从公式中可以看出 f ( x 23 ) f(x_{23}) f(x23)要比 f ( x 1 ) f(x_1) f(x1)要更加接近 f ( x ∗ ) f(x^*) f(x)

并且如果 k = ∣ ∣ x 0 − x ∗ ∣ ∣ 2 ε k=\dfrac{||x_0-x^*||^2}{\varepsilon} k=εx0x2 ( η t = 1 L ) (\eta_t=\dfrac{1}{L}) (ηt=L1)我们可以得到在k次迭代后获得的解与最优解的差距为 ε \varepsilon ε

为什么是这样呢?大家有没有考虑过这个问题?所以今天我们就证明一下这个定理:

先来证明:
k = ∣ ∣ x 0 − x ∗ ∣ ∣ 2 ε k=\dfrac{||x_0-x^*||^2}{\varepsilon} k=εx0x2 ( η t = 1 L ) (\eta_t=\dfrac{1}{L}) (ηt=L1)我们可以得到在k次迭代后获得的解与最优解的差距为 ε \varepsilon ε

首先我们可以看到在公式中:

f ( x k ) ≤ f ( x ∗ ) + ∣ ∣ x 0 − x ∗ ∣ ∣ 2 2 η t k f(x_k)\leq f(x^*)+\dfrac{||x_0-x^*||^2}{2\eta_tk} f(xk)f(x)+2ηtkx0x2

只有k是变化的,将 k = L ∣ ∣ x 0 − x ∗ ∣ ∣ 2 ε k=\dfrac{L||x_0-x^*||^2}{\varepsilon} k=εLx0x2 ( η t = 1 L ) (\eta_t=\dfrac{1}{L}) (ηt=L1)代入公式中:

∣ ∣ x 0 − x ∗ ∣ ∣ 2 2 η t k = ∣ ∣ x 0 − x ∗ ∣ ∣ 2 2 1 L L ∣ ∣ x 0 − x ∗ ∣ ∣ 2 ε = ε 2 \dfrac{||x_0-x^*||^2}{2\eta_tk}=\dfrac{||x_0-x^*||^2}{2\dfrac{1}{L}\dfrac{L||x_0-x^*||^2}{\varepsilon}}=\dfrac{\varepsilon}{2} 2ηtkx0x2=2L1εLx0x2x0x2=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值