grid初始化有一空白行

grid初始化有一空白行,去掉:

dgvInfo.DisplayLayout.Override.AllowAddNew = Infragistics.Win.UltraWinGrid.AllowAddNew.Yes  '默认添加的那行删掉,手动添加


### 回答1: 这是一个有趣的问题!我可以提供一个Python代码的解决方案:def maxRectangle(n,m): maxArea = 0 matrix = [[0] * m] * n for i in range(n): for j in range(m): matrix[i][j] = input() for i in range(n): for j in range(m): if matrix[i][j] == 1: matrix[i][j] = 0 else: matrix[i][j] = 1 for i in range(n): for j in range(m): if matrix[i][j] == 1: area = 1 k = 1 while i+k < n and matrix[i+k][j] == 1: k += 1 area *= k k = 1 while j+k < m and matrix[i][j+k] == 1: k += 1 area *= k if area > maxArea: maxArea = area return maxArea N, M = map(int, input().split()) print(maxRectangle(N, M)) ### 回答2: 可以使用深度优先搜索(DFS)的方法来解决这个问题。以下是Python代码实现: ```python def max_rectangle_area(n, m, grid): max_area = 0 def dfs(row, col): nonlocal max_area if row < 0 or row >= n or col < 0 or col >= m or grid[row][col] == 1: return 0 area = 1 grid[row][col] = 1 # 尝试向四个方向扩展 area += dfs(row + 1, col) # 向下 area += dfs(row - 1, col) # 向上 area += dfs(row, col + 1) # 向右 area += dfs(row, col - 1) # 向左 max_area = max(max_area, area) return area # 遍历每个方格 for i in range(n): for j in range(m): if grid[i][j] == 0: max_area = max(max_area, dfs(i, j)) return max_area # 输入示例 n, m = map(int, input().split()) grid = [] for _ in range(n): row = list(map(int, input().split())) grid.append(row) # 调用函数并输出结果 result = max_rectangle_area(n, m, grid) print(result) ``` 希望能帮助到你! ### 回答3: 解题思路: 1. 使用动态规划来解决此问题。 2. 首先创建一个二维数组dp,用来保存每个方格的状态(即最大矩形空白区域的边长)。 3. 初始化dp数组的第一行和第一列,因为只有一行或一列,所以最大矩形空白区域的边长只能为1或0。 4. 遍历方格,如果当前方格为1,则表示此方格不能构成矩形,将dp数组中对应位置的值设为0;如果当前方格为0,则表示此方格可以构成矩形,将dp数组中对应位置的值更新为左上方格、上方方格和左方方格中最小的值加1。 5. 遍历dp数组,找出最大值,即为最大矩形空白区域的边长。 Python代码如下: ```python N, M = map(int, input().split()) # 输入N和M grid = [] # 保存方格数据的二维数组 for _ in range(N): row = list(map(int, input().split())) # 输入每行的数据 grid.append(row) dp = [[0] * M for _ in range(N)] # 初始化dp数组 # 初始化dp数组的第一行和第一列 for i in range(N): dp[i][0] = grid[i][0] for j in range(M): dp[0][j] = grid[0][j] # 更新dp数组 for i in range(1, N): for j in range(1, M): if grid[i][j] == 0: dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1 # 找出最大值 max_length = max(max(row) for row in dp) print(max_length**2) # 输出矩形有几个方格组成 ``` 注意:此代码假设输入是符合题意的,即N和M的取值范围在1到100之间,每行的数据为0或1。 该算法的间复杂度为O(N*M),其中N为方格的行数,M为方格的列数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值