使用MATLAB解算炼油厂的选址

背景

记得有一年的数据建模大赛,试题是炼油厂的选址,最后我们采用MATLAB编写(复制)蒙特卡洛算法,还到了省级一等奖,这里把仅有一些记忆和材料,放到这里来,用来纪念消失的青春。

本文使用素材下载,内含MATLAB代码

使用蒙特卡洛算法解算炼油厂的选址MATLAB程序,提供试题照片,以及MATLAB代码资源-CSDN文库

试题参考

如下图所示:

问题分析

问题一:

        本问的炼油厂选址是九口油井的任一处,我们可以把九口油井依次作为炼油厂,然后分别计算其费用。

问题二:

        本问的炼油厂选址范围应在0<横坐标x<100、0<纵坐标y<100,的矩形区域内。可以把问题转化为:在该矩形区域内找一点使其满足总费用最少。

问题三:

        本问的两个炼油厂的选址纵横坐标都应在[0,82]的范围内。问即可转化成在该矩形区域内找两点,使其总费用最低。

模型假设

  1. 总费用与距离成正比,设比例系数为1
  2. 总费用与油量成正比,设比例系数为1
  3. 其他因素不影响总费用;
  4. 一口油井的原油智能运往一个炼油厂;

模型建立与求解

第一问模型:

        设选1号油井为炼油厂产生的费用为feiyoug1

选1号油井为炼油厂产生的费用为feiyoug1

选2号油井为炼油厂产生的费用为feiyoug2

选3号油井为炼油厂产生的费用为feiyoug3

选4号油井为炼油厂产生的费用为feiyoug4

选9号油井为炼油厂产生的费用为feiyoug9

由问题一分析可知问题可转化为求

feiyong1=(abs(x2-x1)+abs(y2-y1))*chanliang2+(abs(x3-x1)+abs(y3-y1))*chanliang3+(abs(x4-x1)+abs(y4-y1))*chanliang4+(abs(x5-x1)+abs(y5-y1))*chanliang5+(abs(x6-x1)+abs(y6-y1))*chanliang6+(abs(x7-x1)+abs(y7-y1))*chanliang7+(abs(x8-x1)+abs(y8-y1))*chanliang8+(abs(x9-x1)+abs(y9-y1))*chanliang9

(其中abs是求绝对值,其余八个油井到1号油井的折线距离与产量之积作为费用,总费用即为八个油井产生费用之和)

同法可求feiyong2、feiyong3、……、feiyong9

第一问求解:

利用matlab编程求解如下:

第一问程序

x1=22;

y1=38;

x2=8;

y2=13;

x3=4;

y3=81;

x4=51;

y4=32;

x5=38;

y5=11;

x6=17;

y6=12;

x7=81;

y7=63;

x8=19;

y8=45;

x9=62;

y9=12;

chanliang1=17;

chanliang2=40;

chanliang3=60;

chanliang4=20;

chanliang5=25;

chanliang6=15;

chanliang7=50;

chanliang8=8;

chanliang9=30;

feiyong1=(abs(x2-x1)+abs(y2-y1))*chanliang2+(abs(x3-x1)+abs(y3-y1))*chanliang3+(abs(x4-x1)+abs(y4-y1))*chanliang4+(abs(x5-x1)+abs(y5-y1))*chanliang5+(abs(x6-x1)+abs(y6-y1))*chanliang6+(abs(x7-x1)+abs(y7-y1))*chanliang7+(abs(x8-x1)+abs(y8-y1))*chanliang8+(abs(x9-x1)+abs(y9-y1))*chanliang9

feiyong2=(abs(x1-x2)+abs(y1-y2))*chanliang1+(abs(x3-x2)+abs(y3-y2))*chanliang3+(abs(x4-x2)+abs(y4-y2))*chanliang4+(abs(x5-x2)+abs(y5-y2))*chanliang5+(abs(x6-x2)+abs(y6-y2))*chanliang6+(abs(x7-x2)+abs(y7-y2))*chanliang7+(abs(x8-x2)+abs(y8-y2))*chanliang8+(abs(x9-x2)+abs(y9-y2))*chanliang9

feiyong3=(abs(x1-x3)+abs(y1-y3))*chanliang1+(abs(x2-x3)+abs(y2-y3))*chanliang2+(abs(x4-x3)+abs(y4-y3))*chanliang4+(abs(x5-x3)+abs(y5-y3))*chanliang5+(abs(x6-x3)+abs(y6-y3))*chanliang6+(abs(x7-x3)+abs(y7-y3))*chanliang7+(abs(x8-x3)+abs(y8-y3))*chanliang8+(abs(x9-x3)+abs(y9-y3))*chanliang9

feiyong4=(abs(x1-x4)+abs(y1-y4))*chanliang1+(abs(x2-x4)+abs(y2-y4))*chanliang2+(abs(x3-x4)+abs(y3-y4))*chanliang3+(abs(x5-x4)+abs(y5-y4))*chanliang5+(abs(x6-x4)+abs(y6-y4))*chanliang6+(abs(x7-x4)+abs(y7-y4))*chanliang7+(abs(x8-x4)+abs(y8-y4))*chanliang8+(abs(x9-x4)+abs(y9-y4))*chanliang9

feiyong5=(abs(x1-x5)+abs(y1-y5))*chanliang1+(abs(x2-x5)+abs(y2-y5))*chanliang2+(abs(x3-x5)+abs(y3-y5))*chanliang3+(abs(x4-x5)+abs(y4-y5))*chanliang4+(abs(x6-x5)+abs(y6-y5))*chanliang6+(abs(x7-x5)+abs(y7-y5))*chanliang7+(abs(x8-x5)+abs(y8-y5))*chanliang8+(abs(x9-x5)+abs(y9-y5))*chanliang9

feiyong6=(abs(x1-x6)+abs(y1-y6))*chanliang1+(abs(x2-x6)+abs(y2-y6))*chanliang2+(abs(x3-x6)+abs(y3-y6))*chanliang3+(abs(x4-x6)+abs(y4-y6))*chanliang4+(abs(x5-x6)+abs(y5-y6))*chanliang5+(abs(x7-x6)+abs(y7-y6))*chanliang7+(abs(x8-x6)+abs(y8-y6))*chanliang8+(abs(x9-x6)+abs(y9-y6))*chanliang9

feiyong7=(abs(x1-x7)+abs(y1-y7))*chanliang1+(abs(x2-x7)+abs(y2-y7))*chanliang2+(abs(x3-x7)+abs(y3-y7))*chanliang3+(abs(x4-x7)+abs(y4-y7))*chanliang4+(abs(x5-x7)+abs(y5-y7))*chanliang5+(abs(x6-x7)+abs(y6-y7))*chanliang6+(abs(x8-x7)+abs(y8-y7))*chanliang8+(abs(x9-x7)+abs(y9-y7))*chanliang9

feiyong8=(abs(x1-x8)+abs(y1-y8))*chanliang1+(abs(x2-x8)+abs(y2-y8))*chanliang2+(abs(x3-x8)+abs(y3-y8))*chanliang3+(abs(x4-x8)+abs(y4-y8))*chanliang4+(abs(x5-x8)+abs(y5-y8))*chanliang5+(abs(x6-x8)+abs(y6-y8))*chanliang6+(abs(x7-x8)+abs(y7-y8))*chanliang7+(abs(x9-x8)+abs(y9-y8))*chanliang9

feiyong9=(abs(x1-x9)+abs(y1-y9))*chanliang1+(abs(x2-x9)+abs(y2-y9))*chanliang2+(abs(x3-x9)+abs(y3-y9))*chanliang3+(abs(x4-x9)+abs(y4-y9))*chanliang4+(abs(x5-x9)+abs(y5-y9))*chanliang5+(abs(x6-x9)+abs(y6-y9))*chanliang6+(abs(x7-x9)+abs(y7-y9))*chanliang7+(abs(x8-x9)+abs(y8-y9))*chanliang8

第一问运行结果

feiyong1 =

       13720

feiyong2 =

       15317

feiyong3 =

       18635

feiyong4 =

       14835

feiyong5 =

       15185

feiyong6 =

       14857

feiyong7 =

       20108

feiyong8 =

       13980

feiyong9 =

       16970

由程序运行结果可知:

        feiyong1最小,即炼油厂建在1号油井附近,总费用最少。

第二问模型:

        由分析可设该炼油厂得地址为(x(1),x(2)),且0<x(1)<100,0<x(2)<100

即求zongfeiyong最小

zongfeiyong=17*sqrt((x(1)-22)^2+(x(2)-38)^2)+40*sqrt((x(1)-8)^2+(x(2)-13)^2)+60*sqrt((x(1)-4)^2+(x(2)-81)^2)+20*sqrt((x(1)-51)^2+(x(2)-32)^2)+25*sqrt((x(1)-38)^2+(x(2)-11)^2)+15*sqrt((x(1)-17)^2+(x(2)-12)^2)+50*sqrt((x(1)-81)^2+(x(2)-63)^2)+8*sqrt((x(1)-19)^2+(x(2)-45)^2)+30*sqrt((x(1)-62)^2+(x(2)-12)^2);

其中sqrt为平方的意思,分别求的每个油井的到炼油厂的距离与其产量的积,再作和,即为总费用。

第二问用matlab编程求解如下(利用matlab总求最优解函数fmincon):

第二问程序

function zongfeiyong=timu2(x)

zongfeiyong=17*sqrt((x(1)-22)^2+(x(2)-38)^2)+40*sqrt((x(1)-8)^2+(x(2)-13)^2)+60*sqrt((x(1)-4)^2+(x(2)-81)^2)+20*sqrt((x(1)-51)^2+(x(2)-32)^2)+25*sqrt((x(1)-38)^2+(x(2)-11)^2)+15*sqrt((x(1)-17)^2+(x(2)-12)^2)+50*sqrt((x(1)-81)^2+(x(2)-63)^2)+8*sqrt((x(1)-19)^2+(x(2)-45)^2)+30*sqrt((x(1)-62)^2+(x(2)-12)^2);

xmin=[0;0];

xmax=[100;100];

[x,fopt,flag,c]=fmincon('timu2',zeros(2,1),[],[],[],[],xmin,xmax)

第二问运行结果

x =

   32.4224

   35.0597

fopt =

  1.0213e+004

flag =

     5

c =

         iterations: 8

          funcCount: 26

       lssteplength: 1

           stepsize: 2.0001e-004

          algorithm: [1x44 char]

      firstorderopt: 5.9487e-004

    constrviolation: -32.4224

            message: [1x844 char]

由程序运行结果可知:

即选址坐标为(32.4224,35.0597

此时总费用最少为10213

第三问模型:

        我们可以在纵、横坐标都为[0,82]的范围内任意选取两点做炼油厂。总费用即可转换为RES=min(17*sqrt((x(1)-22)^2+(x(2)-38)^2),17*sqrt((x(3)-22)^2+(x(4)-38)^2))+min(40*sqrt((x(1)-8)^2+(x(2)-13)^2),40*sqrt((x(3)-8)^2+(x(4)-13)^2))+min(60*sqrt((x(1)-4)^2+(x(2)-81)^2),60*sqrt((x(3)-4)^2+(x(4)-81)^2))+min(20*sqrt((x(1)-51)^2+(x(2)-32)^2),20*sqrt((x(3)-51)^2+(x(4)-32)^2))+min(25*sqrt((x(1)-38)^2+(x(2)-11)^2),25*sqrt((x(3)-38)^2+(x(4)-11)^2))+min(15*sqrt((x(1)-17)^2+(x(2)-12)^2),15*sqrt((x(3)-17)^2+(x(4)-12)^2))+min(50*sqrt((x(1)-81)^2+(x(2)-63)^2),50*sqrt((x(3)-81)^2+(x(4)-63)^2))+min(8*sqrt((x(1)-19)^2+(x(2)-45)^2),8*sqrt((x(3)-19)^2+(x(4)-45)^2))+min(30*sqrt((x(1)-62)^2+(x(2)-12)^2),30*sqrt((x(3)-62)^2+(x(4)-12)^2))

其中min(A,B)是求A、B中较小的数。

第三问求解:

        利用蒙特卡洛算法,我们对x(1),x(2),x(3), x(4)随机生成一千万组(范围在[0,82]内),带入总费用公式RES中。求得其中最小值。利用matlab编程如下(程序多次运行):

第三问程序:

% 原函数

function RES=myobjfunc(x)

RES=min(17*sqrt((x(1)-22)^2+(x(2)-38)^2),17*sqrt((x(3)-22)^2+(x(4)-38)^2))+min(40*sqrt((x(1)-8)^2+(x(2)-13)^2),40*sqrt((x(3)-8)^2+(x(4)-13)^2))+min(60*sqrt((x(1)-4)^2+(x(2)-81)^2),60*sqrt((x(3)-4)^2+(x(4)-81)^2))+min(20*sqrt((x(1)-51)^2+(x(2)-32)^2),20*sqrt((x(3)-51)^2+(x(4)-32)^2))+min(25*sqrt((x(1)-38)^2+(x(2)-11)^2),25*sqrt((x(3)-38)^2+(x(4)-11)^2))+min(15*sqrt((x(1)-17)^2+(x(2)-12)^2),15*sqrt((x(3)-17)^2+(x(4)-12)^2))+min(50*sqrt((x(1)-81)^2+(x(2)-63)^2),50*sqrt((x(3)-81)^2+(x(4)-63)^2))+min(8*sqrt((x(1)-19)^2+(x(2)-45)^2),8*sqrt((x(3)-19)^2+(x(4)-45)^2))+min(30*sqrt((x(1)-62)^2+(x(2)-12)^2),30*sqrt((x(3)-62)^2+(x(4)-12)^2));

%蒙特卡罗算法

MIN=inf;

%取一千万组随机数

LIMIT=10000000;

while LIMIT>0

    %生成指定范围内的随机数

    x(1)=82*rand;

    x(2)=82*rand;

    x(3)=82*rand;

    x(4)=82*rand;

    %过滤不符合条件的随机数

    while x(1)>82 | x(1)<0     %| x(2)>81 | x(2)<0 | x

            %再次生成随机数

            x(1)=82*rand;

           % x(2)=(1-0.9397)*rand+0.9397;

    end;

    while x(2)>82 | x(2)<0

        x(2)=82*rand;

    end;

    while x(3)>82 | x(3)<0

        x(3)=82*rand;

    end;

    while x(4)>82 | x(4)<0

        x(4)=82*rand;

    end;

   

    temp=myobjfunc(x);

    if temp<MIN

        MIN=temp;

        y=x;

    end;

    LIMIT=LIMIT-1;

end;

MIN

y

第三问结果:

利用蒙特卡洛算法matlab编程可求

程序多次运行的结果如下:

MIN =

  6.5582e+003

y =

   43.2099   25.0713    3.8432   81.0215

MIN =

  6.5665e+003

y =

    3.9281   81.0393   42.3370   27.9608

MIN =

  6.5583e+003

y =

    4.1848   81.1427   41.9258   25.2987

MIN =

  6.5597e+003

y =

   40.9820   25.7891    3.8891   80.8089

MIN =

  6.5713e+003

y =

   39.3252   23.5597    4.2433   80.8989

MIN =

  6.5511e+003

y =

    4.0086   81.1070   41.8500   25.6334

MIN =

  6.5553e+003

y =

   40.9798   26.6722    4.0593   80.9958

MIN =

  6.5536e+003

y =

   39.8126   24.6946    4.0317   81.0556

由多次运行程序的结果可知:

取其中最小的一次结果即可认为是本题求解答案:

MIN =6.5511e+003

y =4.0086   81.1070   41.8500   25.6334

即总费用最低为6551.1

两个炼油厂的坐标地址分别为(4.0086,81.1070),(41.8500,25.6334

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大牛攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值