引 言 torch.split()函数和torch.chunk()都是用来对数据按照某个维度进行切分,语法形式类似但是参数实际表达含义略有不同。本文通过具体使用案例生动说明两个函数的区别。
一、torch.split()
语法:
split( tensor: Tensor, split_size_or_sections: Union[int, List[int]], dim: int = 0
) -> List[Tensor]:
tensor
:输入数据张量split_size_or_sections
:可以为整数,代表每个张量块切分后的大小,若张量不够切分,把剩余部分当作一块处理。也可以为列表,代表每块大小,列表和一定于数据量相同。dim
:确定切分维度List[Tensor]
:输出切分后的张量列表
示例:
- 在维度1上切分,每块大小为2。
data = torch.randn(2,6,10)
result_split = torch.split(data,2,dim=1) #也可写成 result_split = data.split(2,dim=1)
for e in result_split:
print(e.shape)
###显示结果###
torch.Size([2, 2, 10])
torch.Size([2