pytorch中torch.cat(),torch.chunk(),torch.split()函数的使用方法

本文介绍了PyTorch中的三个重要张量操作函数:torch.cat()用于连接张量,torch.chunk()用于将张量均匀分割,torch.split()则提供更灵活的分割方式,包括按份数和按特定大小分割。每个函数的参数和用法进行了详细解释。
摘要由CSDN通过智能技术生成

一、torch.cat()函数

熟悉C字符串的同学们应该都用过strcat()函数,这个函数在C/C++程序中用于连接2个C字符串。在pytorch中,同样有这样的函数,那就是torch.cat()函数.
先上源码定义:torch.cat(tensors,dim=0,out=None)

  • 第一个参数tensors是你想要连接的若干个张量,按你所传入的顺序进行连接,注意每一个张量需要形状相同,或者更准确的说,进行行连接的张量要求列数相同,进行列连接的张量要求行数相同
  • 第二个参数dim表示维度,dim=0则表示按行连接,dim=1表示按列连接
a=torch.tensor([[1,2,3,4],[1,2,3,4]])
b=torch.tensor([[1,2,3,4,5],[1,2,3,4,5]])
print(torch.cat((a,b),1))
#输出结果为:
tensor([[1, 2, 3, 4, 1, 2, 3, 4, 5],
        [1, 2, 3, 4, 1, 2, 3, 4, 5]])

二、torch.chunk()函数

torch.cat()函数是把各个tensor连接起来,这里的torch.chunk()的作用是把一个tensor均匀分割成若干个小tensor
源码定义:torch.chunk(intput,chunks,dim=0)

  • 第一个参数input是你想要分割的t
torch.cat()是一个将多个张量连接起来的函数。它可以看作是torch.split()和torch.chunk()的逆操作。torch.split()函数可以将一个张量分割成指定尺寸或指定个数的小张量,而torch.cat()函数则可以将这些小张量按照指定的维度连接起来。 举个例子来说明,假设有一个2x3的张量x: ``` >>> x = torch.randn(2, 3) >>> x tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) ``` 如果使用torch.cat((x, x, x), 0),将会按照行的方向连接三个x张量,得到一个6x3的张量: ``` >>> torch.cat((x, x, x), 0) tensor([[ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497], [ 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497]]) ``` 而如果使用torch.cat((x, x, x), 1),将会按照列的方向连接三个x张量,得到一个2x9的张量: ``` >>> torch.cat((x, x, x), 1) tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614], [-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497]]) ``` 因此,torch.cat()函数可以将多个张量按照指定的维度连接在一起,得到一个更大的张量。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [pytorch--torch.cat() & torch.split()](https://blog.csdn.net/weixin_42468475/article/details/115336652)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值