一、torch.cat()函数
熟悉C字符串的同学们应该都用过strcat()
函数,这个函数在C/C++程序中用于连接2个C字符串。在pytorch中,同样有这样的函数,那就是torch.cat()
函数.
先上源码定义:torch.cat(tensors,dim=0,out=None)
- 第一个参数tensors是你想要连接的若干个张量,按你所传入的顺序进行连接,注意每一个张量需要形状相同,或者更准确的说,进行行连接的张量要求列数相同,进行列连接的张量要求行数相同
- 第二个参数dim表示维度,dim=0则表示按行连接,dim=1表示按列连接
a=torch.tensor([[1,2,3,4],[1,2,3,4]])
b=torch.tensor([[1,2,3,4,5],[1,2,3,4,5]])
print(torch.cat((a,b),1))
#输出结果为:
tensor([[1, 2, 3, 4, 1, 2, 3, 4, 5],
[1, 2, 3, 4, 1, 2, 3, 4, 5]])
二、torch.chunk()函数
torch.cat()
函数是把各个tensor连接起来,这里的torch.chunk()
的作用是把一个tensor均匀分割成若干个小tensor
源码定义:torch.chunk(intput,chunks,dim=0)
- 第一个参数input是你想要分割的t