转载自:https://www.cnblogs.com/chengxiao/p/6129630.html
原文实现java未转载,本文采用C++实现
图解排序算法(三)之堆排序
预备知识
堆排序
堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构。
堆
堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:
同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子
该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:
大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]
小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]
ok,了解了这些定义。接下来,我们来看看堆排序的基本思想及基本步骤:
堆排序基本思想及步骤
堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了
步骤一 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。
a.假设给定无序序列结构如下
2.此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。
4.找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。
这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。
此时,我们就将一个无需序列构造成了一个大顶堆。
步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。
a.将堆顶元素9和末尾元素4进行交换
b.重新调整结构,使其继续满足堆定义
c.再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.
后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
再简单总结下堆排序的基本思路:
a.将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
b.将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
c.重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
实现如下:
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
void heapSort(vector<int>&);
void constructMaxHeap(vector<int>&, int);
void swap(vector<int>&, int, int);
void shiftDown(vector<int>&, int, int);
int main() {
int num=0;
vector<int> heap;
while(cin>>num) {
heap.push_back(num);
if(getchar()=='\n') {
break;
}
}
heapSort(heap);
for(auto i:heap) {
cout << i << " ";
}
cout << endl;
return 0;
}
void heapSort(vector<int> &v) {
constructMaxHeap(v, v.size()-1);
for(int i=v.size()-1; i>=1; --i) {
swap(v, i, 0);
shiftDown(v, 0, i-1);
}
}
void constructMaxHeap(vector<int> &v, int lastPos) {
for(int adPos=floor((lastPos-1)/2.0); adPos>=0; --adPos) {
shiftDown(v, adPos, lastPos);
}
}
void shiftDown(vector<int> &v, int adPos, int lastPos) {
int left=2*adPos+1, right=2*adPos+2, maxPos=adPos;
while(adPos<=lastPos) {
if(left<=lastPos && v[left]>v[maxPos]) {
maxPos=left;
}
if(right<=lastPos && v[right]>v[maxPos]) {
maxPos=right;
}
if(maxPos!=adPos) {
swap(v, maxPos, adPos);
adPos=maxPos;
left=2*adPos+1;
right=2*adPos+2;
}
else {
break;
}
}
}
void swap(vector<int> &v, int i, int j) {
int t=v[i];
v[i]=v[j];
v[j]=t;
}
时间复杂度分析
初始构造堆O(n)(见上一篇博文),对堆进行调整一共需要进行n-1次,每一次的开销与当前堆的大小有关,设当前堆的元素个数为k(1<=k<=n-1),则当前调整的开销为logk,因此重建堆的开销是log1+log2+log3+...+log(n-1)=log((n-1)!),而又因为log(n!)和nlog(n)是同阶函数,因此重建堆的开销是(n-1)(log(n-1))=O(logn)。总开销为O(n)+O(nlogn)=O(nlogn)