算法学习|回溯算法 LeetCode 491.递增子序列、46.全排列 、47.全排列 II

文章介绍了如何使用回溯算法解决三种排列组合问题:递增子序列、无重复数字的全排列和包含重复数字的全排列。在每个问题中,都给出了详细的思路解析和C++代码实现,强调了在处理过程中如何避免重复和满足特定条件。
摘要由CSDN通过智能技术生成

一、递增子序列

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

思路

注意:不能进行排序(改变元素顺序从而改变递增子序列)
结点(有条件)都是要收获的结点

实现代码

class Solution {
private:
    vector<vector<int>>  result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        if(path.size() > 1) {
            result.push_back(path);
        }
        unordered_set<int> uset; // 使用set对本层元素进行去重
        for(int i = startIndex; i < nums.size(); i++) {
            if((!path.empty() && nums[i] < path.back())
                  || uset.find(nums[i]) != uset.end()) {
                      continue;
            }
            uset.insert(nums[i]); // 记录这个元素在本层使用过,本层后面不能再用了
            path.push_back(nums[i]);
            backtracking(nums,i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        backtracking(nums, 0);
        return result;
    }
};

二、全排列

给定一个 没有重复数字的序列,返回其所有可能的全排列。

思路

排列有序,同一个元素不能重复使用

实现代码

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, vector<bool>& used) {
        if(path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for(int i = 0; i < nums.size(); i++) {// 之前startIndex是为了避免重复
            if(used[i] == true) continue;
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            used[i] = false;
            path.pop_back();
        }
    }
public:
    vector<vector<int>> permute(vector<int>& nums) {
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

三、全排列||

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

思路

先排序,然后树层去重

实现代码

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, vector<bool>& used) {
        if(path.size() == nums.size()){
            result.push_back(path);
            return;
        } 
        for(int i = 0; i < nums.size(); i++) {
            if( i > 0 && (nums[i] == nums[i - 1]) && used[i - 1] == false) {
                continue;
            }
            if(used[i] == true){
                continue;
            }  // 取过的数直接跳过
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            used[i] = false;
            path.pop_back();
        }
    }
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值