一、递增子序列
给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。
思路
注意:不能进行排序(改变元素顺序从而改变递增子序列)
结点(有条件)都是要收获的结点
实现代码
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
if(path.size() > 1) {
result.push_back(path);
}
unordered_set<int> uset; // 使用set对本层元素进行去重
for(int i = startIndex; i < nums.size(); i++) {
if((!path.empty() && nums[i] < path.back())
|| uset.find(nums[i]) != uset.end()) {
continue;
}
uset.insert(nums[i]); // 记录这个元素在本层使用过,本层后面不能再用了
path.push_back(nums[i]);
backtracking(nums,i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> findSubsequences(vector<int>& nums) {
backtracking(nums, 0);
return result;
}
};
二、全排列
给定一个 没有重复数字的序列,返回其所有可能的全排列。
思路
排列有序,同一个元素不能重复使用
实现代码
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, vector<bool>& used) {
if(path.size() == nums.size()) {
result.push_back(path);
return;
}
for(int i = 0; i < nums.size(); i++) {// 之前startIndex是为了避免重复
if(used[i] == true) continue;
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
used[i] = false;
path.pop_back();
}
}
public:
vector<vector<int>> permute(vector<int>& nums) {
vector<bool> used(nums.size(), false);
backtracking(nums, used);
return result;
}
};
三、全排列||
给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
思路
先排序,然后树层去重
实现代码
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, vector<bool>& used) {
if(path.size() == nums.size()){
result.push_back(path);
return;
}
for(int i = 0; i < nums.size(); i++) {
if( i > 0 && (nums[i] == nums[i - 1]) && used[i - 1] == false) {
continue;
}
if(used[i] == true){
continue;
} // 取过的数直接跳过
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
used[i] = false;
path.pop_back();
}
}
public:
vector<vector<int>> permuteUnique(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<bool> used(nums.size(), false);
backtracking(nums, used);
return result;
}
};