一、最后一块石头的重量||
有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。
思路
把所有石头重量分成总和近似相等的两堆
1.dp[j]: 容量j所能装的最大重量dp[j]
2.递推公式:dp[j] = max(dp[j],dp[j - stones[i] + stones[i])
3.初始化:dp[0] = 0;非零下标dp数组初始化为0
4.遍历顺序:物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历
实现代码
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
vector<int> dp(15001, 0);
int sum = 0;
for (int i = 0; i < stones.size(); i++) sum += stones[i];
int target = sum / 2;
for (int i = 0; i < stones.size(); i++) { // 遍历物品
for (int j = target; j >= stones[i]; j--) { // 遍历背包
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - dp[target] - dp[target];
}
};
二、目标和
给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
思路
加法的总和为x,减法的总和是sum - x
x - (sum - x)= target
x = (target + sum )/ 2
装满正数的集合有多少种方法
1.dp[j] :装满容量为j的背包有dp[j]种方法
2.递推公式:dp[j] += dp[j - nums[j]]
3.初始化:dp[0] = 1 (如果等于0,递推公式所有都为0),非零下标初始为0
4.遍历顺序:先遍历物品,再遍历背包
实现代码
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int sum = 0;
for(int i = 0; i < nums.size(); i++) sum += nums[i];
if(abs(target) > sum) return 0;
if((target + sum) % 2 == 1) return 0;
int bagSize = (target + sum) / 2;
vector<int> dp(bagSize + 1, 0);
dp[0] = 1;
for(int i = 0; i < nums.size(); i++) {
for(int j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
}
};
三、一和零
给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。
思路
装满m个0 n个1的背包,最多装多少个物品
1.dp[i][j] :装满i个0,j个1,最多装dp[i][j] 个物品
2.递推公式:dp[i][j] = max(dp[i][j], dp[i - x] [j - y] + 1)
3.初始化:dp[0][0] = 0 非零下标的dp数组也初始为0
4.遍历顺序:先遍历物品,再遍历背包容量
实现代码
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(m + 1, vector<int> (n + 1, 0));
for(string str : strs) { //遍历物品
int oneNum = 0, zeroNum = 0;
for(char c : str) {
if(c == '0') zeroNum++;
else oneNum++;
}
for(int i = m; i >= zeroNum; i--) { // 遍历背包容量
for(int j = n; j >= oneNum; j--) {
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}
return dp[m][n];
}
};