正态分布/BP算法—笔记

本文探讨了正态分布为何在自然界中普遍存在的原因,包括中心极限定理、信息熵最大、与其他统计分布的关系等。同时,文章深入解释了反向传播(BP)算法的本质,即通过调整网络权重来优化损失函数,并详细描述了前向传播和反向传播的过程,重点在于如何高效计算权重梯度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.为什么正态分布在自然界如此常见?

(1)n个独立同分布随机变量,根据中心极限定律,当n趋于无穷时,其平均值服从正太分布(高斯分布)。一个指标受到若干因素影响,但是单个因素又对指标构不成决定性影响,则该指标服从中心极限定律,收敛与正太分布——林徳伯格-费勒中心极限定理。

(2)正太分布的信息墒最大

(3)统计学三大分布:卡方分布,t分布,f分布都与正太分布有关

(4)Everyone believes in the normal law, the experimenters because they imagine that it is a mathematical theorem, and the mathematicians because they think it is an experimental fact——法国物理学家

(5)自然界最常见的分布并不是正太分布,而是长尾分布。自然界的各个变量之间往往是有关系的。

2. backpropagation

本质:通过改变网络权重(参数)来改变目标损失函数,最终转换为计算损失函数对权重的梯度,而损失函数对权重梯度公式最终由残差来表示。


(1)forward propagation:输入训练数据,结合对应权值和激活函数,传遍整个网络,最后获得输出。计算:矩阵×矩阵 ,...,矩阵x矩阵,矩阵x向量




(2)back propagation:根据网络输出的预测值和真实值获得惨差,把残差反向传遍整个网络(表现为各个权值的梯度)。计算:向量x矩阵,...,向量x矩阵——更高效!梯度的具体计算

方法是:利用多元函数求导的链式法则。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值