一、问题描述
一个m×n的矩阵,只能从矩阵内部向右或向下走,输出从矩阵左上角到右下角的所有路径。
下图即为从1到6的所有路径
| 1 | 2 | 3 |
| 4 | 5 | 6 |
二、解题思路
1、数学解法求路径数(1)使用排列组合。因为只能向右走或者向下走,在(m-1)+(n-1)次行走后,才能到达终点,也就是右下角。而在这m+n-2次行走中,有m-1次是向下,n-1次向右,所以是一个选择问题:
(2)水平行走记作0,竖直行走记作1。每一种行走足迹可以作为一个0,1串,其中n-1个0,m-1个1。可以看做0000000000000(n-1个0)1111111111111(m-1个1)的重排列,也就是:
2、队列输出所有路径
用队列实现打印所有路径。用结构体表示队列中每个点的状态(坐标值及其父结点,初始结点的父结点为-1),开始初始结点(根结点)进队列,然后循环执行以下操作直到队列为空:
1)结点Q出队列。
2)判断Q是否到达目标结点(叶节点),若到达,则依据每个结点的父结点,输出从叶结点到根结点的这条路径。
3)若Q的右结点和下结点未出边界,则记录其父结点的位置(即Q的位置),并进队列。
输出可以看做是一棵二叉树从根结点到叶结点的所有路径。
三、代码实现
#include <stdio.h>
typedef struct temp
{
int x;
int y;
int parent;
}Queue;
void path(int m, int n)
{
Queue q[1000];
int front = 0, rear = 0, i;
q[rear].x = 0;
q[rear].y = 0;
q[rear++].parent = -1;
while (front != rear)
{
if (q[front].x == m-1 && q[front].y == n-1)
{
i = front;
while (i != -1)
{
printf("%3d <-", q[i].x*n + q[i].y+1);
i = q[i].parent;
}
printf("\n");
}
if (q[front].y < n-1)
{
q[rear].x = q[front].x;
q[rear].y = q[front].y+1;
q[rear++].parent = front;
}
if (q[front].x < m-1)
{
q[rear].x = q[front].x+1;
q[rear].y = q[front].y;
q[rear++].parent = front;
}
front++;
}
}
int main()
{
path(3,4);
return 0;
}
本文介绍了一个m×n矩阵从左上角到右下角的所有可能路径,并提供了使用队列实现路径输出的具体算法及C语言代码。
763

被折叠的 条评论
为什么被折叠?



