网络编程:基于TCP的socket网络传输视频(C++, python)

可以实现C++ to C++、Python to Python、C++ to Python的视频或图像传输。一. 概述Socket的英文原义是“孔”或“插座”。作为BSD UNIX的进程通信机制,取后一种意思。通常也称作”套接字”,用于描述IP地址和端口,是一个通信链的句柄,可以用来实现不同虚拟机...

2017-06-12 19:11:33

阅读数 5949

评论数 3

相关技能:ssh远程终端、VNC远程桌面、挂载远程目录

远程

2017-04-25 00:09:36

阅读数 712

评论数 0

相关技能:vim入门操作

vi/vim 分三种模式: 指令模式,编辑模式,选择模式

2017-04-25 00:06:58

阅读数 161

评论数 0

环境配置:mac/linux配置环境变量

这里说的是添加用户级环境变量

2017-04-25 00:06:03

阅读数 290

评论数 0

目标跟踪:Meanshift, Camshift

Meanshift/Camshift

2017-04-25 00:04:13

阅读数 1770

评论数 0

图像处理:HOG, Haar-like, LBP

特征提取

2017-04-25 00:01:33

阅读数 463

评论数 0

目标跟踪:KCF

KCF是João F. Henriques的论文High-Speed Tracking with Kernelized Correlation Filters提出的一种目标跟踪算法。KCF,由目标区域形成循环矩阵,再利用循环矩阵在傅立叶空间可对角化等一些性质,通过岭回归得到通用的预测公式,特别要说...

2017-04-24 23:58:32

阅读数 4682

评论数 3

深度学习:卷积神经网络

个人认为深度学习的第一层基础知识是基本的神经网络知识,学习参数的方法(寻优,如梯度下降法,注意一下,BP算法是求偏导数的一种办法,属于梯度下降迭代中的一个步骤)。个人认为深度学习的第二层基础是卷积神经网络,也就是CNN。CNN是一种网络结构,由多层网络组成,这其中有卷积层(Convolution)...

2017-04-24 23:55:58

阅读数 608

评论数 0

机器学习:Softmax回归

Softmax回归,我们可以说它是逻辑回归的在多分类问题下的推广,我们也可以说逻辑回归是Softmax回归的一种特殊形式。一. 假设函数在 softmax回归中,我们解决的是多分类问题(相对于 logistic 回归解决的二分类问题),类标 yy 可以取 kk 个不同的值(而不是 2 个)。因此,...

2017-04-24 23:51:54

阅读数 263

评论数 0

给PDF嵌入相关字体

LaTeX写好编译生成的pdf在上传到IEEE检查格式的时候有时会提示相关字体未嵌入。针对这种问题,我们可以用adobe打印解决。(1)首先,用adobe arcobat打开pdf(2)然后打印,打印机选择Adobe PDF(3)点击“属性”(4)选择“Adobe PDF设置”tab栏(5)在默认...

2017-03-06 11:25:50

阅读数 2168

评论数 0

深度学习:自编码器、神经网络基础

基本的自编码器(Autoencoder)是一个含有输入、隐含、输出的三层神经网络,它的目的是尽可能复现输入输出的关系。一. 神经元神经网络的最小组成单元是神经元,神经元的结构如下:左边的x1,x2,x3x_1,x_2,x_3是运算输入值,11代表截距(为什么要有截距:我们知道线性拟合的时候如果不含...

2017-02-28 11:44:02

阅读数 1768

评论数 0

机器学习:k均值聚类

k均值(K-means)聚类算法是一种经典的非监督型机器学习算法。算法简单快速。一. 算法步骤(1)首先确定聚类的个数K,初始化K个质心,可以随机定位,也可以和现有数据点重合(2)对剩余的每个数据测量其到每个质心的欧式距离,并把它归到最近的质心的类(3)重新计算已经得到的各个类的质心(4)迭代直至...

2017-02-23 10:58:06

阅读数 313

评论数 0

机器学习:线性回归、局部加权线性回归、岭回归、前向逐步回归

所谓回归,简单来讲就是根据现有数据拟合出函数,然后根据该函数进行一些预测工作。分类的输出是标称型,而回归的输出为数值型。接下来介绍几种常见的全局型回归方法一. 线性回归(Linear Regression)对于二维数据而言,线性回归就是找出一个一次函数去拟合数据,使得平方误差最小。是的,这里的损失...

2017-02-21 20:06:32

阅读数 3405

评论数 0

在mac上配合Dash使用sublime

在mac上配合Dash使用sublime关于DashDash是一个mac端(ISO也有提供)上的API文档快速浏览器,Dash提供了很多常用的API,还有很多其他开发者提供的文档。有了它,开发者查阅文档的效率大大提升。 Dash的Integration里面提供了很多到第三方开发应用的文档查询链接...

2017-02-18 15:37:52

阅读数 3454

评论数 0

机器学习:集成学习算法Bagging,Boosting

Bootstrap,Bagging,Boosting都属于集成学习方法,所谓集成学习方法,就是将训练的学习器集成在一起,原理来源于PAC (Probably Approximately Correct,可能近似正确学习模型)。在PAC学习模型中,若存在一个多项式级的学习算法来识别一组概念,并且识别...

2017-02-18 15:36:12

阅读数 3187

评论数 0

机器学习:一些常见的监督型学习方法(K近邻、决策树、朴素贝叶斯、逻辑回归)

机器学习:一些常见的监督型学习方法(K近邻、决策树、朴素贝叶斯、逻辑回归)在机器学习中,无监督学习(Unsupervised learning)就是聚类,事先不知道样本的类别,通过某种办法,把相似的样本放在一起归位一类;而监督型学习(Supervised learning)就是有训练样本,带有属性...

2017-02-18 15:35:00

阅读数 4346

评论数 0

机器学习:支持向量机(Support Vector Machine, SVM)

机器学习:支持向量机(Support Vector Machine, SVM)SVM是经典的监督型分类算法,广泛应用于机器学习、数据挖掘等领域。本质上SVM与线性回归方法类似,都是求一组权重系数。感知机(perceptron)分类算法由于样本顺序和不同初值会导致解的多样性,解不唯一,亦不为最优,而...

2017-02-18 15:32:15

阅读数 372

评论数 0

机器学习:机器学习中的损失函数

机器学习中的损失函数在机器学习中,损失函数是用来衡量预测结果与实际值之间差别大小的指标。一般的损失函数有5五种:一. Gold Standard(标准式,0-1式)主要用于理想sample,这种一般很少有实践场景,这个方法的作用更多的是用来衡量其他损失函数的效果。表达式如下:L(m)={01if ...

2017-02-18 15:28:36

阅读数 1579

评论数 0

windows 10安装ubuntu 16,双系统安装教程

一、首先在windows 10系统下给ubuntu分出一定大小的磁盘 1.按下快捷键win+x,找到“磁盘管理” 2.选择一空闲磁盘右键,选择“压缩卷”,建议不少于40g,根据需求自行分。得到“未分配“的磁盘,颜色为黑色 3.注意用于安装ubuntu的磁盘必须是未分配状态,这个和安装wind...

2016-10-12 19:59:23

阅读数 10863

评论数 0

visual studio 2013(2015)配置opencv 3.1,win10系统(x64)

(1)安装vs2013 (2)安装opencv.exe。打开exe执行,实际上就是解压,解压到自己想要解压的位置,例如我安装在了C盘根目录下 (3)配置环境变量 右键“计算机”点属性➡高级系统设置➡高级➡环境变量 添加用户变量,值为opencv,路径为C:\opencv\build 添加用户变量...

2016-05-19 09:28:36

阅读数 910

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭