li_dongxuan
码龄9年
关注
提问 私信
  • 博客:112,017
    112,017
    总访问量
  • 20
    原创
  • 801,490
    排名
  • 37
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2016-05-15
博客简介:

EastCarFxx Blog

查看详细资料
个人成就
  • 获得55次点赞
  • 内容获得15次评论
  • 获得390次收藏
  • 代码片获得238次分享
创作历程
  • 18篇
    2017年
  • 2篇
    2016年
成就勋章
TA的专栏
  • 机器学习
    6篇
  • 深度学习
    2篇
  • 环境配置
    3篇
  • trick
    2篇
  • 相关技能
    2篇
  • 目标跟踪
    2篇
  • 图像处理
    1篇
  • 网络编程
    1篇
兴趣领域 设置
  • 人工智能
    opencv
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

fire识别小demo

发布资源 2019.01.17 ·
rar

网络编程:基于TCP的socket网络传输视频(C++, python)

可以实现C++ to C++、Python to Python、C++ to Python的视频或图像传输。一. 概述Socket的英文原义是“孔”或“插座”。作为BSD UNIX的进程通信机制,取后一种意思。通常也称作”套接字”,用于描述IP地址和端口,是一个通信链的句柄,可以用来实现不同虚拟机或不同计算机之间的通信。在Internet上的主机一般运行了多个服务软件,同时提供几种服务。每种服务都打
原创
发布博客 2017.06.12 ·
20798 阅读 ·
20 点赞 ·
5 评论 ·
168 收藏

相关技能:ssh远程终端、VNC远程桌面、挂载远程目录

远程
原创
发布博客 2017.04.25 ·
1619 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

相关技能:vim入门操作

vi/vim 分三种模式: 指令模式,编辑模式,选择模式
原创
发布博客 2017.04.25 ·
458 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

环境配置:mac/linux配置环境变量

这里说的是添加用户级环境变量
原创
发布博客 2017.04.25 ·
699 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

目标跟踪:Meanshift, Camshift

Meanshift/Camshift
原创
发布博客 2017.04.25 ·
3635 阅读 ·
3 点赞 ·
0 评论 ·
15 收藏

图像处理:HOG, Haar-like, LBP

特征提取
原创
发布博客 2017.04.25 ·
957 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

目标跟踪:KCF

KCF是João F. Henriques的论文High-Speed Tracking with Kernelized Correlation Filters提出的一种目标跟踪算法。KCF,由目标区域形成循环矩阵,再利用循环矩阵在傅立叶空间可对角化等一些性质,通过岭回归得到通用的预测公式,特别要说一点就是该预测公式没有矩阵求逆的计算,这都归功于作者巧妙地将循环矩阵在傅立叶空间的性质与目标跟踪时循环采
原创
发布博客 2017.04.24 ·
9822 阅读 ·
12 点赞 ·
4 评论 ·
74 收藏

深度学习:卷积神经网络

个人认为深度学习的第一层基础知识是基本的神经网络知识,学习参数的方法(寻优,如梯度下降法,注意一下,BP算法是求偏导数的一种办法,属于梯度下降迭代中的一个步骤)。个人认为深度学习的第二层基础是卷积神经网络,也就是CNN。CNN是一种网络结构,由多层网络组成,这其中有卷积层(Convolution)、池化层(Pooling)、ReLU、Dropout,有的网络可能没有Dropout,有的网络可能链接上
原创
发布博客 2017.04.24 ·
1276 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

机器学习:Softmax回归

Softmax回归,我们可以说它是逻辑回归的在多分类问题下的推广,我们也可以说逻辑回归是Softmax回归的一种特殊形式。一. 假设函数在 softmax回归中,我们解决的是多分类问题(相对于 logistic 回归解决的二分类问题),类标 yy 可以取 kk 个不同的值(而不是 2 个)。因此,对于训练集 {(x(1),y(1)),…,(x(m),y(m))}\{ (x^{(1)}, y^{(1)
原创
发布博客 2017.04.24 ·
448 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

给PDF嵌入相关字体

LaTeX写好编译生成的pdf在上传到IEEE检查格式的时候有时会提示相关字体未嵌入。针对这种问题,我们可以用adobe打印解决。(1)首先,用adobe arcobat打开pdf(2)然后打印,打印机选择Adobe PDF(3)点击“属性”(4)选择“Adobe PDF设置”tab栏(5)在默认设置的右侧点“编辑”按钮(6)进入字体子菜单,嵌入未嵌入的字体(7)确定,保存(8)在“Adobe PD
原创
发布博客 2017.03.06 ·
5810 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

深度学习:自编码器、神经网络基础

基本的自编码器(Autoencoder)是一个含有输入、隐含、输出的三层神经网络,它的目的是尽可能复现输入输出的关系。一. 神经元神经网络的最小组成单元是神经元,神经元的结构如下:左边的x1,x2,x3x_1,x_2,x_3是运算输入值,11代表截距(为什么要有截距:我们知道线性拟合的时候如果不含常数项即截距,那么无论怎么拟合数据都必将经过原点,这很有可能和实际数据不符,在神经网络里也是这个原因)。
原创
发布博客 2017.02.28 ·
5230 阅读 ·
4 点赞 ·
0 评论 ·
12 收藏

机器学习:k均值聚类

k均值(K-means)聚类算法是一种经典的非监督型机器学习算法。算法简单快速。一. 算法步骤(1)首先确定聚类的个数K,初始化K个质心,可以随机定位,也可以和现有数据点重合(2)对剩余的每个数据测量其到每个质心的欧式距离,并把它归到最近的质心的类(3)重新计算已经得到的各个类的质心(4)迭代直至新的质心与原质心相等或小于指定阈值,算法结束(5)若迭代次数达到预先设置的最大迭代次数,算法结束二. 算
原创
发布博客 2017.02.23 ·
642 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习:线性回归、局部加权线性回归、岭回归、前向逐步回归

所谓回归,简单来讲就是根据现有数据拟合出函数,然后根据该函数进行一些预测工作。分类的输出是标称型,而回归的输出为数值型。接下来介绍几种常见的全局型回归方法一. 线性回归(Linear Regression)对于二维数据而言,线性回归就是找出一个一次函数去拟合数据,使得平方误差最小。是的,这里的损失函数是平方损失。平方误差可以写做:∑im=(yi−xTiw)2\sum^m_i=(y_i-x_i^Tw)
原创
发布博客 2017.02.21 ·
4893 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

在mac上配合Dash使用sublime

在mac上配合Dash使用sublime关于DashDash是一个mac端(ISO也有提供)上的API文档快速浏览器,Dash提供了很多常用的API,还有很多其他开发者提供的文档。有了它,开发者查阅文档的效率大大提升。 Dash的Integration里面提供了很多到第三方开发应用的文档查询链接。最吸引我的是Alfred和Sublime Text。Dash + Sublime Text3首先下载安
原创
发布博客 2017.02.18 ·
4160 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习:集成学习算法Bagging,Boosting

Bootstrap,Bagging,Boosting都属于集成学习方法,所谓集成学习方法,就是将训练的学习器集成在一起,原理来源于PAC (Probably Approximately Correct,可能近似正确学习模型)。在PAC学习模型中,若存在一个多项式级的学习算法来识别一组概念,并且识别正确率很高,那么这组概念是强可学习的;而如果学习算法识别一组概念的正确率仅比随机猜测略好,那么这组概念是
原创
发布博客 2017.02.18 ·
5362 阅读 ·
0 点赞 ·
2 评论 ·
6 收藏

机器学习:一些常见的监督型学习方法(K近邻、决策树、朴素贝叶斯、逻辑回归)

机器学习:一些常见的监督型学习方法(K近邻、决策树、朴素贝叶斯、逻辑回归)在机器学习中,无监督学习(Unsupervised learning)就是聚类,事先不知道样本的类别,通过某种办法,把相似的样本放在一起归位一类;而监督型学习(Supervised learning)就是有训练样本,带有属性标签,也可以理解成样本有输入有输出。所有的回归算法和分类算法都属于监督学习。回归(Regression)
原创
发布博客 2017.02.18 ·
27287 阅读 ·
13 点赞 ·
3 评论 ·
174 收藏

机器学习:支持向量机(Support Vector Machine, SVM)

机器学习:支持向量机(Support Vector Machine, SVM)SVM是经典的监督型分类算法,广泛应用于机器学习、数据挖掘等领域。本质上SVM与线性回归方法类似,都是求一组权重系数。感知机(perceptron)分类算法由于样本顺序和不同初值会导致解的多样性,解不唯一,亦不为最优,而SVM本质上是解最优目标方程的过程,解唯一,而且对于线性不可分的样本集会通过kernelling将样本映
原创
发布博客 2017.02.18 ·
938 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习:机器学习中的损失函数

机器学习中的损失函数在机器学习中,损失函数是用来衡量预测结果与实际值之间差别大小的指标。一般的损失函数有5五种:一. Gold Standard(标准式,0-1式)主要用于理想sample,这种一般很少有实践场景,这个方法的作用更多的是用来衡量其他损失函数的效果。表达式如下:L(m)={01if  m≥0if  m<0L(m)=\begin{cases}0 & \textrm{if} \ \ m\
原创
发布博客 2017.02.18 ·
2315 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

windows 10安装ubuntu 16,双系统安装教程

一、首先在windows 10系统下给ubuntu分出一定大小的磁盘1.按下快捷键win+x,找到“磁盘管理”2.选择一空闲磁盘右键,选择“压缩卷”,建议不少于40g,根据需求自行分。得到“未分配“的磁盘,颜色为黑色3.注意用于安装ubuntu的磁盘必须是未分配状态,这个和安装windows不太一样。如果你打算在一个空白的格式化后的磁盘安装,那么右键选择”删除卷“,同样得到“未分配“的
原创
发布博客 2016.10.12 ·
12144 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏
加载更多