函数连续性和导数
函数连续定义:设 f(x) 在 x0 的某邻域内有定义,如果当自变量的增量 Δx=x−x0 趋近于零时,对应的函数增量 Δy=f(x0+Δx)−f(x0) 也趋近于零,即 limΔx→0Δy=0 ,则称函数 y=f(x) 在 x0 点连续。
导数
函数连续定义:设 f(x) 在 x0 的某邻域内有定义,如果当自变量的增量 Δx=x−x0 趋近于零时,对应的函数增量 Δy=f(x0+Δx)−f(x0) 也趋近于零,即 limΔx→0Δy=0 ,则称函数 y=f(x) 在 x0 点连续。