AI 人工智能之概率论基础(1)

本文介绍了概率论的基础概念,包括频率与概率的关系,古典概率的定义,条件概率的计算,独立事件的概念,以及伯努利试验的特征。通过实例解析了如何在AI中运用这些概率论原理,如计算事件发生的概率和独立性判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

频率和概率

频率:在相同条件下进行n次重复试验,在n次重复试验中,事件A发生了m(A)次,则称:m(A)/n
为事件A发生的频率;

概率:随机事件A发生可能性大小的度量(非负实数,<=1),称为事件A发生的概率,
记做P(A)。

在大量重复进行同一试验时,事件A发生的频率m(A)/n总是接近于某个数,在它附近
摆动,这个常数就是事件A的概率。因此只要n相当大,概率是可以通过频率来测量的,
或者说频率是概率的一个近似。

事件A的概率P(A)是对事件A发生可能性大小的一个度量,它是一个确定的数值,其值
大于0小于1。与试验次数n无关。
事件A的频率m(A)/n是一个与试验次数n有关的数,它总是在概率P(A)附近摆动。当试验
次数n相当大的时候,频率可以作为概率的一个近似,或者说概率是可以通过频率来测量。

古典概率

古典概率通常又叫事前概率,是指当随机事件中各种可能发生的结果及其出现的次数都可以由演绎或外推法得知,而无需经过任何统计试验即可计算各种可能发生结果的概率。
关于古典概率是以这样的假设为基础的,即随机现象所能发生的事件是有限的、互不相容的,而且每个基本事件发生的可能性相等。
例如,抛掷一枚平正的硬币,正面朝上与反面朝上是唯一可能出现的两个基本事件,且互不相容。如果把出现正面的事件记为E,出现事件E的概率记为p(E),则:
P(E)=1/(1+1)=1/2
一般说来,如果在全部可能出现的基本事件范围内构成事件A的基本事件有a个,不构成事件A的事件有b个࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值